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Preface to Volume 2

The first volume of this edition covered basic aspects of finite element approximation
in the context of linear problems. Typical examples of two- and three-dimensional
elasticity, heat conduction and electromagnetic problems in a steady state and tran-
sient state were dealt with and a finite element computer program structure was intro-
duced. However, many aspects of formulation had to be relegated to the second and
third volumes in which we hope the reader will find the answer to more advanced
problems, most of which are of continuing practical and research interest.

In this volume we consider more advanced problems in solid mechanics while in
Volume 3 we consider applications in fluid dynamics. It is our intent that Volume 2
can be used by investigators familiar with the finite element method in general
terms and will introduce them here to the subject of specialized topics in solid
mechanics. This volume can thus in many ways stand alone. Many of the general
finite element procedures available in Volume 1 may not be familiar to a reader intro-
duced to the finite element method through different texts. We therefore recommend
that the present volume be used in conjunction with Volume 1 to which we make
frequent reference.

Two main subject areas in solid mechanics are covered here:

1. Non-linear problems (Chapters 1-3 and 10—12) In these the special problems of
solving non-linear equation systems are addressed. In the first part we restrict
our attention to non-linear behaviour of materials while retaining the assumptions
on small strain used in Volume 1 to study the linear elasticity problem. This serves
as a bridge to more advanced studies later in which geometric effects from large
displacements and deformations are presented. Indeed, non-linear applications
are today of great importance and practical interest in most areas of engineering
and physics. By starting our study first using a small strain approach we believe
the reader can more easily comprehend the various aspects which need to be
understood to master the subject matter. We cover in some detail problems in
viscoelasticity, plasticity, and viscoplasticity which should serve as a basis for
applications to other material models. In our study of finite deformation problems
we present a series of approaches which may be used to solve problems including
extensions for treatment of constraints (e.g. near incompressibility and rigid body
motions) as well as those for buckling and large rotations.



xiv Preface to Volume 2

2. Plates and shells (Chapters 4-9) This section is of course of most interest to those
engaged in ‘structural mechanics’ and deals with a specific class of problems in
which one dimension of the structure is small compared to the other two. This
application is one of the first to which finite elements were directed and which
still is a subject of continuing research. Those with interests in other areas of
solid mechanics may well omit this part on first reading, though by analogy the
methods exposed have quite wide applications outside structural mechanics.

Volume 2 concludes with a chapter on Computer Procedures, in which we describe
application of the basic program presented in Volume 1 to solve non-linear problems.
Clearly the variety of problems presented in the text does not permit a detailed treatment
of all subjects discussed, but the ‘skeletal’ format presented and additional information
available from the publisher’s web site! will allow readers to make their own extensions.

We would like at this stage to thank once again our collaborators and friends for
many helpful comments and suggestions. In this volume our particular gratitude goes
to Professor Eric Kasper who made numerous constructive comments as well as
contributing the section on the mixed—enhanced method in Chapter 10. We would
also like to take this opportunity to thank our friends at CIMNE for providing a
stimulating environment in which much of Volume 2 was conceived.

OCZ and RLT

' Complete source code for all programs in the three volumes may be obtained at no cost from the
publisher’s web page: http://www.bh.com/companions/fem



General problems in solid
mechanics and non-linearity

1.1 Introduction

In the first volume we discussed quite generally linear problems of elasticity and of
field equations. In many practical applications the limitation of linear elasticity or
more generally of linear behaviour precludes obtaining an accurate assessment of
the solution because of the presence of non-linear effects and/or because of the
geometry having a ‘thin’ dimension in one or more directions. In this volume we
describe extensions to the formulations previously introduced which permit solutions
to both classes of problems.

Non-linear behaviour of solids takes two forms: material non-linearity and geo-
metric non-linearity. The simplest form of a non-linear material behaviour is that
of elasticity for which the stress is not linearly proportional to the strain. More gen-
eral situations are those in which the loading and unloading response of the material
is different. Typical here is the case of classical elasto-plastic behaviour.

When the deformation of a solid reaches a state for which the undeformed and
deformed shapes are substantially different a state of finite deformation occurs. In
this case it is no longer possible to write linear strain-displacement or equilibrium
equations on the undeformed geometry. Even before finite deformation exists it is
possible to observe buckling or load bifurcations in some solids and non-linear equilib-
rium effects need to be considered. The classical Euler column where the equilibrium
equation for buckling includes the effect of axial loading is an example of this class of
problem.

Structures in which one dimension is very small compared with the other two
define plate and shell problems. A plate is a flat structure with one thin direction
which is called the thickness, and a shell is a curved structure in space with one
such small thickness direction. Structures with two small dimensions are called
beams, frames, or rods. Generally the accurate solution of linear elastic problems
with one (or more) small dimension(s) cannot be achieved efficiently by using the
three-dimensional finite element formulations described in Chapter 6 of Volume 1'
and conventionally in the past separate theories have been introduced. A primary
reason is the numerical ill-conditioning which results in the algebraic equations
making their accurate solution difficult to achieve. In this book we depart from
past tradition and build a much stronger link to the full three-dimensional theory.



2 General problems in solid mechanics and non-linearity

This volume will consider each of the above types of problems and formulations
which make practical finite element solutions feasible. We establish in the present chap-
ter the general formulation for both static and transient problems of a non-linear kind.
Here we show how the linear problems of steady state behaviour and transient beha-
viour discussed in Volume 1 become non-linear. Some general discussion of transient
non-linearity will be given here, and in the remainder of this volume we shall primarily
confine our remarks to quasi-static (i.e. no inertia effects) and static problems only.

In Chapter 2 we describe various possible methods for solving non-linear algebraic
equations. This is followed in Chapter 3 by consideration of material non-linear
behaviour and the development of a general formulation from which a finite element
computation can proceed.

We then describe the solution of plate problems, considering first the problem of thin
plates (Chapter 4) in which only bending deformations are included and, second, the
problem in which both bending and shearing deformations are present (Chapter 5).

The problem of shell behaviour adds in-plane membrane deformations and curved
surface modelling. Here we split the problem into three separate parts. The first, com-
bines simple flat elements which include bending and membrane behaviour to form a
faceted approximation to the curved shell surface (Chapter 6). Next we involve the
addition of shearing deformation and use of curved elements to solve axisymmetric
shell problems (Chapter 7). We conclude the presentation of shells with a general
form using curved isoparametric element shapes which include the effects of bending,
shearing, and membrane deformations (Chapter 8). Here a very close link with the full
three-dimensional analysis of Volume 1 will be readily recognized.

In Chapter 9 we address a class of problems in which the solution in one coordinate
direction is expressed as a series, for example a Fourier series. Here, for linear
material behavior, very efficient solutions can be achieved for many problems.
Some extensions to non-linear behaviour are also presented.

In the last part of this volume we address the general problem of finite deformation
as well as specializations which permit large displacements but have small strains. In
Chapter 10 we present a summary for the finite deformation of solids. Basic relations
for defining deformation are presented and used to write variational forms related to
the undeformed configuration of the body and also to the deformed configuration. It
is shown that by relating the formulation to the deformed body a result is obtain
which is nearly identical to that for the small deformation problem we considered
in Volume 1 and which we expand upon in the early chapters of this volume. Essential
differences arise only in the constitutive equations (stress—strain laws) and the
addition of a new stiffness term commonly called the geometric or initial stress
stiffness. For constitutive modelling we summarize alternative forms for elastic and
inelastic materials. In this chapter contact problems are also discussed.

In Chapter 11 we specialize the geometric behaviour to that which results in large
displacements but small strains. This class of problems permits use of all the consti-
tutive equations discussed for small deformation problems and can address classical
problems of instability. It also permits the construction of non-linear extensions to
plate and shell problems discussed in Chapters 4—8 of this volume.

In Chapter 12 we discuss specialization of the finite deformation problem to
address situations in which a large number of small bodies interact (multiparticle
or granular bodies) or individual parts of the problem are treated as rigid bodies.



Small deformation non-linear solid mechanics problems

In the final chapter we discuss extensions to the computer program described in
Chapter 20 of Volume 1 necessary to address the non-linear material, the plate and
shell, and the finite deformation problems presented in this volume. Here the discus-
sion is directed primarily to the manner in which non-linear problems are solved. We
also briefly discuss the manner in which elements are developed to permit analysis of
either quasi-static (no inertia effects) or transient applications.

1.2 Small deformation non-linear solid mechanics
problems

1.2.1 Introduction and notation

In this general section we shall discuss how the various equations which we have
derived for linear problems in Volume 1 can become non-linear under certain circum-
stances. In particular this will occur for structural problems when non-linear stress—
strain relationships are used. But the chapter in essence recalls here the notation and
the methodology which we shall adopt throughout this volume. This repeats matters
which we have already dealt with in some detail. The reader will note how simply the
transition between linear and non-linear problems occurs.

The field equations for solid mechanics are given by equilibrium (balance of
momentum), strain-displacement relations, constitutive equations, boundary condi-
tions, and initial conditions.”™’

In the treatment given here we will use two notational forms. The first is a cartesian
tensor indicial form (e.g. see Appendix B, Volume 1) and the second is a matrix form
as used extensively in Volume 1." In general, we shall find that both are useful to describe
particular parts of formulations. For example, when we describe large strain problems
the development of the so-called ‘geometric’ or ‘initial stress’ stiffness is most easily
described by using an indicial form. However, in much of the remainder, we shall find
that it is convenient to use the matrix form. In order to make steps clear we shall here
review the equations for small strain in both the indicial and the matrix forms. The
requirements for transformations between the two will also be again indicated.

For the small strain applications and fixed cartesian systems we denote coordinates as
X,y,zorinindex formas x;, x,, x3. Similarly, the displacements will be denoted as u, v, w
or uy, Us, u3. Where possible the coordinates and displacements will be denoted as x; and
u;, respectively, where the range of the index 7 is 1, 2, 3 for three-dimensional applications
(or 1,2 for two-dimensional problems). In matrix form we write the coordinates as

X X4
X=40pyp=<¢Xx (L.1)
z X3
and displacements as
u u
U=14 v p)=4q iU (1.2)

3



4 General problems in solid mechanics and non-linearity
1.2.2 Weak form for equilibrium - finite element discretization

The equilibrium equations (balance of linear momentum) are given in index form as

;i + by = piij, i,j=12,3 (1.3)
where o;; are components of (Cauchy) stress, p is mass density, b; are body force
components and (') denotes partial differentiation with respect to time. In the
above, and in the sequel, we always use the convention that repeated indices in a
term are summed over the range of the index. In addition, a partial derivative with
respect to the coordinate x; is indicated by a comma, and a superposed dot denotes
partial differentiation with respect to time. Similarly, moment equilibrium (balance
of angular momentum) yields symmetry of stress given indicially as

0y = T (14)

Equations (1.3) and (1.4) hold at all points x; in the domain of the problem €. Stress
boundary conditions are given by the traction condition

for all points which lie on the part of the boundary denoted as T',.

A variational (weak) form of the equations may be written by using the procedures
described in Chapter 3 of Volume 1 and yield the virtual work equations given byl’g'9

Q o 7 Q :
In the above cartesian tensor form, virtual strains are related to virtual displacements
as
66;‘/ = %((51/1,‘"/- + 6“_/}1‘) (1 7)

In this book we will often use a transformation to matrix form where stresses are
given in the order

_ T
c=[oy 0pn O3 Op 0y 03]

(1.8)

= [o-xx Oyy Ozz Oxy Oy sz]T

and strains by
e=[en en €3 M2 M3 731]T (1.9)

= [ Exx € yy €2z Fy,\’y 7}?2 Vzx ] !
where symmetry of the tensors is assumed and ‘engineering’ shear strains are
introduced as*
vy = 265 (1.10)
to make writing of subsequent matrix relations in a consistent manner.

The transformation to the six independent components of stress and strain is
performed by using the index order given in Table 1.1. This ordering will apply to

*This form is necessary to allow the internal work always to be written as o' &.



Small deformation non-linear solid mechanics problems

Table 1.1 Index relation between tensor and matrix forms

Form Index value

Matrix 1 2 3 4 5 6

Tensor (1,2,3) 11 22 33 12 23 31
21 32 13

Tensor (x,y,z) XX yy zz Xy yz X
»x zy xz

many subsequent developments also. The order is chosen to permit reduction to two-
dimensional applications by merely deleting the last two entries and treating the third
entry as appropriate for plane or axisymmetric applications.

In matrix form, the virtual work equation is written as (see Chapter 3 of Volume 1)

J 6quiidQ+J 6sTch—J 6udeQ—J Su' tdl' =0 (1.11)
Q Q Q I,

Finite element approximations to displacements and virtual displacements are
denoted by

u(x,7) = N(x)u(r) and du(x) =N(x)su (1.12)
or in isoparametric form as
u(E, ) = N@E)(); ou(E) =N@Esi with x(&)=NEx (113
and may be used to compute virtual strains as
6g = Séu = (SN)éu = Béu (1.14)

in which the three-dimensional strain-displacement matrix is given by [see Eq. (6.11),
Volume 1]

N, 0 07
0 N, 0
0 0 N,
B— v (1.15)
N, N; 0
0 N; N,
N3 0 N, |

In the above, u denotes time-dependent nodal displacement parameters and éu
represents arbitrary virtual displacement parameters.

Noting that the virtual parameters éu are arbitrary we obtain for the discrete
problem”

Mu + P(o) = f (1.16)
where
M:J NTHNdQ (1.17)
Q
f:J NdeQJrJ N'tdr (1.18)
Q T,

* For simplicity we omit direct damping which leads to the term Cii (see Chapter 17, Volume 1).

5



6 General problems in solid mechanics and non-linearity
and
P(o) :J B'sdQ (1.19)
Q

The term P is often referred to as the stress divergence or stress force term.
In the case of linear elasticity the stress is immediately given by the stress—strain
relations (see Chapter 2, Volume 1) as

¢ =De (1.20)

when effects of initial stress and strain are set to zero. In the above the D are the usual
elastic moduli written in matrix form. If a displacement method is used the strains are
obtained from the displacement field by using

¢ = Bu (1.21)

Equation (1.19) becomes
P(o) = (J B'DB dQ)ﬁ = Kii (1.22)
Q

in which K is the linear stiffness matrix. In many situations, however, it is necessary to
use non-linear or time-dependent stress—strain (constitutive) relations and in these
cases we shall have to develop solution strategies directly from Eq. (1.19). This will
be considered further in detail in later chapters. However, at this stage we simply
need to note that

¢ =o(g) (1.23)

quite generally and that the functional relationship can be very non-linear and
occasionally non-unique. Furthermore, it will be necessary to use a mixed approach
if constraints, such as near incompressibility, are encountered. We address this latter
aspect in Sec. 1.2.4; however, before doing so we consider first the manner whereby
solution of the transient equations may be computed by using step-by-step time
integration methods discussed in Chapter 18 of Volume 1.

1.2.3 Non-linear formulation of transient and steady-state
problems

To obtain a set of algebraic equations for transient problems we introduce a discrete
approximation in time. We consider the GN22 method or the Newmark procedure as
being applicable to the second-order equations (see Chapter 18, Volume 1). Dropping
the tilde on discrete variables for simplicity we write the approximation to the
solution as

ﬁ(tn+1) ~ Uy

and now the equilibrium equation (1.16) at each discrete time ¢, , | may be written in a
residual form as

‘I’n+1:fn+l_Miin+l_Pn+1:0 (124)
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where
P, = J B'e,,dQ =P(u,,) (1.25)
Q

Using the GN22 formulae, the discrete displacements, velocities, and accelerations
are linked by [see Eq. (18.62), Volume 1]

U, :un+Atﬁn +%(1_ﬂ2)A[2ﬁn +%ﬁ2A12ﬁn+l (126)
i, =, + (1 — ) Atii, + B, Atiiy | (1.27)

where At =1,, —t,.

Equations (1.26) and (1.27) are simple, vector, linear relationships as the coefficient
0B, and (3, are assigned a priori and it is possible to take the basic unknown in Eq.
(1.24) as any one of the three variables at time step n+ 1 (i.e. w,, |, W, Or U, ).

A very convenient choice for explicit schemes is that of i, ;. In such schemes we
take the constant 3, as zero and note that this allows u, | to be evaluated directly
from the initial values at time 7, without solving any simultaneous equations.
Immediately, therefore, Eq. (1.24) will yield the values of u,,; by simple inversion
of matrix M.

If the M matrix is diagonalized by any one of the methods which we have discussed
in Volume 1, the solution for u, , | is trivial and the problem can be considered solved.
However, such explicit schemes are only conditionally stable as we have shown in
Chapter 18 of Volume 1 and may require many time steps to reach a steady state
solution. Therefore for transient problems and indeed for all static (steady state)
problems, it is often more efficient to deal with implicit methods. Here, most con-
veniently, u, | can be taken as the basic variable from which 1w, ; and i, ; can be
calculated by using Eqs (1.26) and (1.27). The equation system (1.24) can therefore
be written as

‘IJ(un+l) E‘IJ)H-I =0 (128)

The solution of this set of equations will require an iterative process if the relations
are non-linear. We shall discuss various non-linear calculation processes in some
detail in Chapter 2; however, the Newton—Raphson method forms the basis of
most practical schemes. In this method an iteration is as given below

owr

P xw  ——auf =0 (1.29)
aunJrl
where du’ is an increment to the solution® such that
+1 k k
unil =W, 1+ du, (130)

For problems in which path dependence is involved it is necessary to keep track of the
total increment during the iteration and write

vl =u, + AusT! (1.31)
Thus the total increment can be accumulated by using the same solution increments as

Auft! = u/,;ﬂ —u, = Adt + dut (1.32)

*Note that an italic ‘d’ is used for a solution increment and an upright ‘d’ for a differential.

7



8 General problems in solid mechanics and non-linearity

in which a quantity without the superscript k denotes a converged value from a
previous time step. The initial iterate may be taken as zero or, more appropriately,
as the converged solution from the last time step. Accordingly,

u,l1+1 =u, giving also Aul =0 (1.33)
A solution increment is now computed from Eq. (1.29) as
du, = (Kp)™' ¥, (1.34)
where the tangent matrix is computed as
Kh— vk
ou,, |

From expressions (1.24) and (1.26) we note that the above equations can be rewritten
as

k ..
ke = P p P J B'DEBAD + —2— M
aun+1 8"n+1 Q /BZAtz
We note that the above relation is similar but not identical to that of linear elasti-
city. Here D’% is the tangent modulus matrix for the stress—strain relation (which
may or may not be unique but generally is related to deformations in a non-
linear manner).
Iteration continues until a convergence criterion of the form

19511 < el (1.35)

or similar is satisfied for some small tolerance . A good practice is to assume the
tolerance at half machine precision. Thus, if the machine can compute to about 16
digits of accuracy, selection of ¢ = 1078 is appropriate. Additional discussion on
selection of appropriate convergence criteria is presented in Chapter 2.

Various forms of non-linear elasticity have in fact been used in the present context
and here we present a simple approach in which we define a strain energy W as a
function of ¢

W =W() = W(y)

and we note that this definition gives us immediately

ow
=— 1.36
o= (1.36)
If the nature of the function W is known, we note that the tangent modulus DI}
becomes
W ‘ Oe
D} = d B=+
T <8£8£>n+ X an Ou

The algebraic non-linear solution in every time step can now be obtained by the
process already discussed. In the general procedure during the time step, we have
to take an initial value for w, ., for example, u,l,H =u, (and similarly for u,
and u,, ) and then calculate at step 2 the value of \Ilfiﬂ at k=1, and obtain
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du,]1+1 updating the value of uﬁ+ 1 by Eq. (1.30). This of course necessitates calculation
of stresses at #,,; to obtain the necessary forces. It is worthwhile noting that the
solution for steady state problems proceeds on identical lines with solution variable
chosen as u,, ; but now we simply say i, ; = u,,; = 0 as well as the corresponding
terms in the governing equations.

1.2.4 Mixed or irreducible forms

The previous formulation was cast entirely in terms of the so-called displacement
formulation which indeed was extensively used in the first volume. However, as we
mentioned there, on some occasions it is convenient to use mixed finite element
forms and these are especially necessary when constraints such as incompressibility
arise. It has been frequently noted that certain constitutive laws, such as those of
viscoelasticity and associative plasticity that we will discuss in Chapter 3, the material
behaves in a nearly incompressible manner. For such problems a reformulation
following the procedures given in Chapter 12 of Volume 1 is necessary. We remind
the reader that on such occasions we have two choices of formulation. We can
have the variables u and p (where p is the mean stress) as a two-field formulation
(see Sec. 12.3 or 12.7 of Volume 1) or we can have the variables u, p and ¢, (where
g, 1s the volume change) as a three-field formulation (see Sec. 12.4, Volume 1). An
alternative three-field form is the enhanced strain approach presented in Sec. 11.5.3
of Volume 1. The matter of which we use depends on the form of the constitutive
equations. For situations where changes in volume affect only the pressure the two-
field form can be easily used. However, for problems in which the response is coupled
between the deviatoric and mean components of stress and strain the three-field
formulations lead to much simpler forms from which to develop a finite element
model. To illustrate this point we present again the mixed formulation of Sec. 12.4
in Volume 1 and show in detail how such coupled effects can be easily included
without any change to the previous discussion on solving non-linear problems. The
development also serves as a basis for the development of an extended form which
permits the treatment of finite deformation problems. This extension will be presented
in Sec. 10.4 of Chapter 10.

A three-field mixed method for general constitutive models

In order to develop a mixed form for use with constitutive models in which mean and
deviatoric effects can be coupled we recall (Chapter 12 of Volume 1) that mean and
deviatoric matrix operators are given by

1

1
Id:I—gmmT, (1.37)

S O O = =

where I is the identity matrix.

9



10 General problems in solid mechanics and non-linearity

As in Volume 1 we introduce independent parameters ¢, and p describing volumetric
change and mean stress (pressure), respectively. The strains may now be expressed in
a mixed form as

¢ =1,(Su) +1ime, (1.38)

and the stresses in a mixed form as
c=1,6+mp (1.39)

where 6 is the set of stresses deduced directly from the strains, incremental strains, or
strain rates, depending on the particular constitutive model form. For the present we
shall denote this stress by

& = o(z) (1.40)

where we note it is not necessary to split the model into mean and deviatoric parts.
The Galerkin (variational) equations for the case including transients are now
given by

J 6quiidQ+J 6(Su)Tch:J 6udeQ+J Su' tdl
Q Q Q T,

J dey[fm'e —p|dQ =0 (1.41)
Q

L ép[m"(Su) —¢,]d2=0

Introducing finite element approximations to the variables as
u=u=N,u, p~p=N,p and gy = &, = N§,
and similar approximations to virtual quantities as
ou ~ 6u = N, ou, op = 6p = N,6p and be, = 8¢, = N, 68,
the strain and virtual strain in an element become
g =I;Bu+1imN, (1.42)
e = 1,Bou+ I1mN,6¢,

in which B is the standard strain-displacement matrix given in Eq. (1.15). Similarly,
the stresses in each element may be computed by using

6 =1,6+mN,p (1.43)

where again 6 are stresses computed as in Eq. (1.40) in terms of the strains €.
Substituting the element stress and strain expressions from Eqs (1.42) and (1.43)
into Eq. (1.41) we obtain the set of finite element equations

P+ Mu=f
P,-Cp=0 (1.44)
—C'8&,+Ea=0
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where

P:J BT dQ, P,

%J N'm!6dQ
Q Q

C= J NIN, de, E :J N,m'BdQ (1.45)
Q Q

f:J N}bd&HJ N/ tdr
Q T,

If the pressure and volumetric strain approximations are taken locally in each
element and N, = N, it is possible to solve the second and third equation of (1.44)
in each element individually. Noting that the array C is now symmetric positive
definite, we may always write these as

~ -1
P=CF (1.46)
& = C 'Ei = Wi
The mixed strain in each element may now be computed as
SZ[IdB—i—lmBV]ﬁ:{Id lm}[B}ﬁ (1.47)
3 3 B,
where
B, =N, W (1.48)

defines a mixed form of the volumetric strain-displacement equations.
From the above results it is possible to write the vector P in the alternative
forms'®!!

P=| B'6dO
Q

= | B'I,6dQ +J B'mN,dQC™'P,
JQ Q

1
=| B'I,6d0 +§J WIN'mT6d0
Q Q

= [BT I, + % BimT] 6dQ (1.49)
Q

The computation of P may then be represented in a matrix form as
p—| (8" BI]
Q

in which we note the inclusion of the transpose of the matrices appearing in the
expression for the mixed strain given in Eq. (1.47). Based on this result we observe
that it is not necessary to compute the true mixed stress except when reporting
final results where, for situations involving near incompressible behaviour, it is crucial
to compute explicitly the mixed pressure to avoid any spurious volumetric stress
effects.

I, |,
| |40 (1.50)
3



12 General problems in solid mechanics and non-linearity

The last step in the process is the computation of the tangent for the equations. This
is straightforward using forms given by Eq. (1.40) where we obtain
dé = Dy de

Use of Eq. (1.47) to express the incremental mixed strains then gives

I
KT:JQ [BT BH [lmT

o B
ot [P ;m]{B]dQ (151)

\4

It should be noted that construction of a modified modulus term given by
IdeId %Id]u)"[m

Im"Drl; im'Dm

Iy
1T
zm

v

requires very few operations because of the sparsity and form of the arrays I; and m.
Consequently, the multiplications by the coefficient matrices B and B, in this form is
far more efficient than constructing a full B as

B=1,B+!mB, (1.53)

and operating on Dy directly.

The above form for the mixed element generalizes the result in Volume 1 and is
valid for use with many different linear and non-linear constitutive models. In
Chapter 3 we consider stress—strain behaviour modelled by viscoelasticity, classical
plasticity, and generalized plasticity formulations. Each of these forms can lead to
situations in which a nearly incompressible response is required and for many
examples included in this volume we shall use the above mixed formulation. Two
basic forms are considered: four-noded quadrilateral or eight-noded brick isopara-
metric elements with constant interpolation in each element for one-term approxima-
tions to N, and N, by unity; and nine-noded quadrilateral or 27-noded brick
isoparametric elements with linear interpolation for N, and N,.” Accordingly, in
two dimensions we use

Np:Nv:[l € 77] or [1 X y}
and in three dimensions
Np:NV:[l § n C} or [1 Xy Z]

The elements created by this process may be used to solve a wide range of problems in
solid mechanics, as we shall illustrate in later chapters of this volume.

1.3 Non-linear quasi-harmonic field problems

In subsequent chapters we shall touch upon non-linear problems in the context of
inelastic constitutive equations for solids, plates, and shells and in geometric effects

* Formulations using the eight-noded quadrilateral and twenty-noded brick serendipity elements may also
be constructed; however, we showed in Chapter 11 of Volume 1 that these elements do not fully satisfy the
mixed patch test.
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arising from finite deformation. In Volume 3 non-linear effects will be considered for
various fluid mechanics situations. However, non-linearity also may occur in many
other problems and in these the techniques described in this chapter are still univer-
sally applicable. An example of such situations is the quasi-harmonic equation which
is encountered in many fields of engineering. Here we consider a simple quasi-harmo-
nic problem given by (e.g. heat conduction)

pcd+V'ig—0(¢) =0 (1.54)

with suitable boundary conditions. Such a form may be used to solve problems
ranging from temperature response in solids, seepage in porous media, magnetic
effects in solids, and potential fluid flow. In the above, q is a flux and generally this
can be written as

q=q(¢, Vo) =k(¢, V9)V¢
or, after linearization,
dq=K"do +k'd(V¢)
where
N 0q; 0q;
09 99
The source term Q(¢) also can introduce non-linearity.

A discretization based on Galerkin procedures gives after integration by parts of
the q term the problem

8l = JQ SppcddQ — JQ(VéqS)Tq dQ

K? and  kj =

_JQM,Q@,) dQ—J 66, dTl’ =0 (1.55)

q
and is still valid if q and/or Q (and indeed the boundary conditions) are dependent on
¢ or its derivatives. Introducing the interpolations

¢=N¢ and 6p=Néd (1.56)
a discretized form is given as
T = () — Ch—P,($) =0 (1.57)

where

C= J NTpeNdQ
Q

P, = —JQ N'qdQ (1.58)

f= JQ NTO(¢) dQ — J NTg,dr

q
Equation (1.57) may be solved following similar procedures described in Chapter
18, Volume 1. For instance, just as we did with GN22 we can now use GNI11 as

¢n+1 :¢iz+(1_0)(i)n+6(i)n+l (159)
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14 General problems in solid mechanics and non-linearity

Once again we have the choice of using ¢, ; or <i)n+1 as the primary solution vari-
able. To this extent the process of solving transient problems follows absolutely the
same lines as those described in the previous section (and indeed in the previous
volume) and need not be further discussed. We note again that the use of ¢, | as
the chosen variable will allow the solution method to be applied to static or steady
state problems in which the first term of Eq. (1.54) becomes zero.

1.4 Some typical examples of transient non-linear
calculations

In this section we report results of some transient problems of structural mechanics as
well as field problems. As we mentioned earlier, we usually will not consider transient
behaviour in latter parts of this book as the solution process for transients follow
essentially the path described in Volume 1.

Transient heat conduction
The governing equation for this set of physical problems is discussed in the previous
section, with ¢ being the temperature 7 now [Eq. (1.54)].

Non-linearity clearly can arise from the specific heat, ¢, thermal conductivity, &,

and source, Q, being temperature-dependent or from a radiation boundary condition

aa—: =—a(T-T,)" (1.60)
with n # 1. Here « is a convective heat transfer coefficient and 7, is an ambient
external temperature. We shall show two examples to illustrate the above.

The first concerns the freezing of ground in which the latent heat of freezing is
represented by varying the material properties with temperature in a narrow zone,
as shown in Fig. 1.1. Further, in the transition from the fluid to the frozen state a
variation in conductivity occurs. We now thus have a problem in which both matrices
Cand P [Eq. (1.58)] are variable, and solution in Fig. 1.2 illustrates the progression of
a freezing front which was derived by using the three-point (Lees) algorithm'>!? with
C=C,and P=P,.

A computational feature of some significance arises in this problem as values of
the specific heat become very high in the transition zone and, in time stepping
can be missed if the temperature step straddles the freezing point. To avoid this
difficulty and keep the heat balance correct the concept of enthalpy is introduced,
defining

T
H:J pedT (1.61)
0
Now, whenever a change of temperature is considered, an appropriate value of pc is
calculated that gives the correct change of H.

The heat conduction problem involving phase change is of considerable impor-
tance in welding and casting technology. Some very useful finite element solutions
of these problems have been obtained.'* Further elaboration of the procedure
described above is given in reference 15.
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A .
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e |
2 :
k(T)
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pc(T) :
H(T) L] -
T, T, -

Fig. 1.1 Estimation of thermophysical properties in phase change problems. The latent heat effect is approxi-
mated by a large capacity over a small temperature interval 2AT.

The second non-linear example concerns the problem of spontaneous ignition."® We
will discuss the steady state case of this problem in Chapter 3 and now will be con-
cerned only with transient cases. Here the heat generated depends on the temperature

0 =éde' (1.62)

and the situation can become physically unstable with the computed temperature
rising continuously to extreme values. In Fig. 1.3 we show a transient solution of a
sphere at an initial temperature of 77 = 290 K immersed in a bath of 500 K. The solu-
tion is given for two values of the parameter ¢ with k = pc = 1, and the non-linearities
are now so severe that an iterative solution in each time increment is necessary. For
the larger value of § the temperature increases to infinite value in a finite time and the
time interval for the computation had to be changed continuously to account for this.
The finite time for this point to be reached is known as the induction time and is shown
in Fig. 1.3 for various values of 6.

The question of changing the time interval during the computation has not been
discussed in detail, but clearly this must be done quite frequently to avoid large
changes of the unknown function which will result in inaccuracies.

Structural dynamics
Here the examples concern dynamic structural transients with material and geometric
non-linearity. A highly non-linear geometrical and material non-linearity generally
occurs. Neglecting damping forces, Eq. (1.16) can be explicitly solved in an efficient
manner.

If the explicit computation is pursued to the point when steady state conditions are
approached, that is, until i = a ~ 0 the solution to a static non-linear problem is
obtained. This type of technique is frequently efficient as an alternative to the methods

15
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Fig. 1.2 Freezing of a moist soil (sand).
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Fig. 1.3 Reactive sphere. Transient temperature behaviour for ignition (6 = 16) and non-ignition (6 = 2)
cases: (a) induction time versus Frank—Kamenetskii parameter; temperature profiles; (b) temperature profiles
for ignition (6 = 16) and non-ignition (6 = 2) transient behaviour of a reactive sphere.

described above and in Chapter 2 and has been applied successfully in the context of
finite differences under the name of ‘dynamic relaxation’ for the solution of non-linear
static problems.!’

Two examples of explicit dynamic analysis will be given here. The first problem,
illustrated in Plate 3, is a large three-dimensional problem and its solution was
obtained with the use of an explicit dynamic scheme. In such a case implicit schemes
would be totally inapplicable and indeed the explicit code provides a very efficient
solution of the crash problem shown. It must, however, be recognized that such

17



18 General problems in solid mechanics and non-linearity

Fig. 1.4 Crash analysis: (a) mesh at t = 0ms; (b) mesh at t = 20ms; (c) mesh at t = 40ms.
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final solutions are not necessarily unique. As a second example Figure 1.4 shows a
typical crash analysis of a motor vehicle carried out by similar means.

Earthquake response of soil — structures

We have mentioned in Chapter 19, Volume 1, the essential problem involving inter-
action of the soil skeleton or matrix with the water contained in the pores. This
problem is of extreme importance in earthquake engineering and here again solution
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Fig. 1.5 Retaining wall subjected to earthquake excitation: comparison of experiment (centrifuge) and
calculations. '
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20 General problems in solid mechanics and non-linearity

of transient non-linear equations is necessary. As in the mixed problem which we
referred to earlier, the variables include displacement, and the pore pressure in the
fluid p.

In Chapter 19 of Volume 1, we have in fact shown a comparison between some
centrifuge results and computations showing the development of the pore pressure
arising from a particular form of the constitutive relation assumed. Many such
examples and indeed the full theory are given in a recent text,'s and in Fig. 1.5 we
show an example of comparison of calculations and a centrifuge model presented
at a 1993 workshop known as VELACS'". This figure shows the displacements of
a big retaining wall after the passage of an earthquake, which were measured in the
centrifuge and also calculated.

1.5 Concluding remarks

In this chapter we have summarized the basic steps needed to solve a general small-
strain solid mechanics problem as well as the quasi-harmonic field problem. Only a
standard Newton—Raphson solution method has been mentioned to solve the
resulting non-linear algebraic problem. For problems which include non-linear
behaviour there are many situations where additional solution strategies are required.
In the next chapter we will consider some basic schemes for solving such non-linear
algebraic problems. In subsequent chapters we shall address some of these in the
context of particular problems classes.

The reader will note that, except in the example solutions, we have not discussed
problems in which large strains occur. We can note here, however, that the solution
strategy described above remains valid. The parts which change are associated with
the effects of finite deformation on computing stresses and thus the stress-divergence
term and resulting tangent moduli. As these aspects involve more advanced concepts
we have deferred the treatment of finite strain problems to the latter part of the
volume where we will address basic formulations and applications.
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Solution of non-linear
algebraic equations

2.1 Introduction

In the solution of linear problems by a finite element method we always need to solve
a set of simultaneous algebraic equations of the form

Ka=f (2.1)

Provided the coefficient matrix is non-singular the solution to these equations is
unique. In the solution of non-linear problems we will always obtain a set of algebraic
equations; however, they generally will be non-linear, which we indicate as

T(a)=f—P(a)=0 (2.2)

where a is the set of discretization parameters, f a vector which is independent of the
parameters and P a vector dependent on the parameters. These equations may have
multiple solutions [i.e. more than one set of a may satisfy Eq. (2.2)]. Thus, if a solution
is achieved it may not necessarily be the solution sought. Physical insight into the
nature of the problem and, usually, small-step incremental approaches from known
solutions are essential to obtain realistic answers. Such increments are indeed
always required if the constitutive law relating stress and strain changes is path depen-
dent or if the load-displacement path has bifurcations or multiple branches at certain
load levels.
The general problem should always be formulated as the solution of

O, =¥, )=1,—Pl@,.)=0 (2.3)
which starts from a nearby solution at
a=a,, v, =0, f=A1, (2.4)

and often arises from changes in the forcing function f, to
fn+l :fn+Afn (25)

The determination of the change Aa, such that
A, =2, + Aa, (26)



Iterative techniques

"

Fig. 2.1 Possibility of multiple solutions.

will be the objective and generally the increments of Af,, will be kept reasonably small
so that path dependence can be followed. Further, such incremental procedures will
be useful in avoiding excessive numbers of iterations and in following the physically
correct path. In Fig. 2.1 we show a typical non-uniqueness which may occur if the
function ¥ decreases and subsequently increases as the parameter a uniformly
increases. It is clear that to follow the path Af, will have both positive and negative
signs during a complete computation process.

It is possible to obtain solutions in a single increment of f only in the case of mild
non-linearity (and no path dependence), that is, with

f, =0, Af, = f, 00 =1 (27)

The literature on general solution approaches and on particular applications is
extensive and, in a single chapter, it is not possible to encompass fully all the variants
which have been introduced. However, we shall attempt to give a comprehensive
picture by outlining first the general solution procedures.

In later chapters we shall focus on procedures associated with rate-independent
material non-linearity (plasticity), rate-dependent material non-linearity (creep and
visco-plasticity), some non-linear field problems, large displacments and other special
examples.

2.2 lterative techniques
2.2.1 General remarks

The solution of the problem posed by Eqs (2.3)—(2.6) cannot be approached directly
and some form of iteration will always be required. We shall concentrate here on
procedures in which repeated solution of linear equations (i.e. iteration) of the form

Kida;; = r:1+1 (2.8)

23



24 Solution of non-linear algebraic equations

in which a superscript 7 indicates the iteration number. In these a solution increment
da! is computed.” Gaussian elimination techniques of the type discussed in Volume 1
can be used to solve the linear equations associated with each iteration. However, the
application of an iterative solution method may prove to be more economical, and in
later chapters we shall frequently refer to such possibilities although they have not
been fully explored.

Many of the iterative techniques currently used to solve non-linear problems origi-
nated by intuitive application of physical reasoning. However, each of such tech-
niques has a direct association with methods in numerical analysis, and in what
follows we shall use the nomenclature generally accepted in texts on this subject.! >

Although we state each algorithm for a set of non-linear algebraic equations, we
shall illustrate each procedure by using a single scalar equation. This, though
useful from a pedagogical viewpoint, is dangerous as convergence of problems with
numerous degrees of freedom may depart from the simple pattern in a single
equation.

2.2.2 The Newton-Raphson method

The Newton—Raphson method is the most rapidly convergent process for solutions
of problems in which only one evaluation of ¥ is made in each iteration. Of
course, this assumes that the initial solution is within the zone of attraction and,
thus, divergence does not occur. Indeed, the Newton—Raphson method is the only
process described here in which the asymptotic rate of convergence is quadratic.
The method is sometimes simply called Newton’s method but it appears to have
been simultancously derived by Raphson, and an interesting history of its origins is
given in reference 6.

In this iterative method we note that, to the first order, Eq. (2.3) can be approxi-
mated as

. . oW\ )
wanh) = )+ (G ) da =0 (29)
Oa n+1
Here the iteration counter i usually starts by assuming
arl1+l =a, (210)

in which a,, is a converged solution at a previous load level or time step. The jacobian

matrix (or in structural terms the stiffness matrix) corresponding to a tangent direc-
tion is given by

oP ov

KT = ——== = —

Oa Oa

Equation (2.9) gives immediately the iterative correction as

(2.11)

i i i
Kt dan = ‘IJI1+ 1

* Note the difference between a solution increment da and a differential da.
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Fig. 2.2 The Newton-Raphson method.

or
da;; = (K%)71 :7+1
A series of successive approximations gives
32111 =a, | +da,,
=a, + Aa),

where

i
Aa), = Z da*
k=1

(2.12)

(2.13)

(2.14)

The process is illustrated in Fig. 2.2 and shows the very rapid convergence that can be

achieved.

The need for the introduction of the total increment Aal, is perhaps not obvious
here but in fact it is essential if the solution process is path dependent, as we shall

see in Chapter 3 for some non-linear constitutive equations of solids.

The Newton—Raphson process, despite its rapid convergence, has some negative

features:

1. a new K1 matrix has to be computed at each iteration;

2. if direct solution for Eq. (2.12) is used the matrix needs to be factored at each

iteration;

3. on some occasions the tangent matrix is symmetric at a solution state but unsym-
metric otherwise (e.g. in some schemes for integrating large rotation parameters’
or non-associated plasticity). In these cases an unsymmetric solver is needed in

general.

Some of these drawbacks are absent in alternative procedures, although generally

then a quadratic asymptotic rate of convergence is lost.
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2.2.3 Modified Newton-Raphson method

This method uses essentially the same algorithm as the Newton—Raphson process but
replaces the variable jacobian matrix Kt by a constant approximation

K; ~ Kt (2.15)
giving in place of Eq. (2.12),
da, =Kr'¥,, (2.16)

Many possible choices exist here. For instance K; can be chosen as the matrix
corresponding to the first iteration K+ [as shown in Fig. 2.3(a)] or may even be one
corresponding to some previous time step or load increment K° [as shown in Fig.
2.3(b)]. In the context of solving problems in solid mechanics the method is also
known as the stress transfer or initial stress method. Alternatively, the approximation
can be chosen every few iterations as Kt = K/; where j < i.

Obviously, the procedure generally will converge at a slower rate (generally a norm
of the residual ¥ has linear asymptotic convergence instead of the quadratic one in the
full Newton—Raphson method) but some of the difficulties mentioned above for the
Newton—Raphson process disappear. However, some new difficulties can also arise as
this method fails to converge when the tangent used has opposite ‘slope’ to the one at
the current solution (e.g. as shown by regions with different slopes in Fig. 2.1).
Frequently the ‘zone of attraction’ for the modified process is increased and
previously divergent approaches can be made to converge, albeit slowly. Many
variants of this process can be used and symmetric solvers often can be employed
when a symmetric form of Ky is chosen.

2.2.4 Incremental-secant or quasi-Newton methods

Once the first iteration of the preceding section has been established giving
da) =K'} | (2.17)
a secant ‘slope’ can be found, as shown in Fig. 2.4, such that
day = (K2) (2,1 — 90, (2.18)
This ‘slope’ can now be used to establish a> by using
dal = (K2) w2, (2.19)

Quite generally, one could write in place of Eq. (2.19) for i > 1, now dropping
subscripts,

da’ = (K) '@ (2.20)
where (K!)™' is determined so that

dal! = () (w0 - @) = () 221
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Fig. 2.3 The modified Newton-Raphson method: (a) with initial tangent in increment; (b) with initial problem
tangent.

For the scalar system illustrated in Fig. 2.4 the determination of K' is trivial and, as
shown, the convergence is much more rapid than in the modified Newton—Raphson
process (generally a super-linear asymptotic convergence rate is achieved for a norm
of the residual).

For systems with more than one degree of freedom the determination of K. or its
inverse is more difficult and is not unique. Many different forms of the matrix K}
can satisfy relation (2.1) and, as expected, many alternatives are used in practice.
All of these use some form of updating of a previously determined matrix or of its
inverse in a manner that satisfies identically Eq. (2.21). Some such updates preserve
the matrix symmetry whereas others do not. Any of the methods which begin with

27



28 Solution of non-linear algebraic equations

fA

fno]

Fig. 2.4 The secant method starting from a K° prediction.

a symmetric tangent can avoid the difficulty of non-symmetric matrix forms that arise
in the Newton—Raphson process and yet achieve a faster convergence than is possible
in the modified Newton—Raphson procedures.

Such secant update methods appear to stem from ideas introduced first by
Davidon® and developed later by others. Dennis and More’ survey the field exten-
sively, while Matthies and Strang'® appear to be the first to use the procedures
in the finite element context. Further work and assessment of the performance of
various update procedures is available in references 11-14.

The BFGS update9 (named after Broyden, Fletcher, Goldfarb and Shanno) and the
DFP updateg (Davidon, Fletcher and Powell) preserve matrix symmetry and positive
definiteness and both are widely used. We summarize below a step of the BFGS
update for the inverse, which can be written as

(K) = (T wr! ) (K1) (1 vw]) (2.22)

where I is an identity matrix and

_ (daiil)TYFl i—1 i
1 i—1
Wi = dali—DTyi~1 da

where 7y is defined by Eq. (2.21). Some algebra will readily verify that substitution of
Egs (2.22) and (2.23) into Eq. (2.21) results in an identity. Further, the form of
Eq. (2.22) guarantees preservation of the symmetry of the original matrix.

The nature of the update does not preserve any sparsity in the original matrix. For
this reason it is convenient at every iteration to return to the original (sparse) matrix
K!, used in the first iteration and to reapply the multiplication of Eq. (2.22) through
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Fig. 2.5 Direct (or Picard) iteration.
all previous iterations. This gives the algorithm in the form
b, = H(I + vjij)\Ili
j=2
b, = (K!) b, (2.24)
i=2
dai = H(I -+ Wl‘,jv;r,j)bz
Jj=0

This necessitates the storage of the vectors v; and w; for all previous iterations and
their successive multiplications. Further details on the operations are described well
in reference 10.

When the number of iterations is large (i > 15) the efficiency of the update
decreases as a result of incipient instability. Various procedures are open at this
stage, the most effective being the recomputation and factorization of a tangent
matrix at the current solution estimate and restarting the process again.

Another possibility is to disregard all the previous updates and return to the
original matrix K!. Such a procedure was first suggested by Crisfield'""!>!¢ in the
finite element context and is illustrated in Fig. 2.5. It is seen to be convergent at a
slightly slower rate but avoids totally the stability difficulties previously encountered
and reduces the storage and number of operations needed. Obviously any of the
secant update methods can be used here.

The procedure of Fig. 2.5 is identical to that generally known as direct (or Picard)
iteration! and is particularly useful in the solution of non-linear problems which can
be written as

¥a)=f—K(a)a=0 (2.25)
In such a case a, +1 = a, is taken and the iteration proceeds as

i i -1
a/144;11 = [K(an-‘r 1 )} fn+ 1 (226)
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2.2.5 Line search procedures - acceleration of convergence

All the iterative methods of the preceding section have an identical structure described
by Eqs (2.12)—(2.14) in which various approximations to the Newton matrix K} are
used. For all of these an iterative vector is determined and the new value of the
unknowns found as

=, +da, (2.27)

starting from

all1+l =4,
in which a,, is the known (converged) solution at the previous time step or load level.
The objective is to achieve the reduction of \I'f,t_ll to zero, although this is not always
easily achieved by any of the procedures described even in the scalar example
illustrated. To get a solution approximately satisfying such a scalar non-linear
problem would have been in fact easier by simply evaluating the scalar \Ilfﬁll for
various values of a,,; and by suitable interpolation arriving at the required
answer. For multi-degree-of-freedom systems such an approach is obviously not
possible unless some scalar norm of the residual is considered. One possible approach

1s to write
i+1, i i
a,, | =a, +n,da, (2.28)

and determine the step size 7, ; so that a projection of the residual on the search direc-
tion da,, is made zero. We could define this projection as

G, = (dal) @it (2.29)

n+1
where

i ) )
U =(a, + 0, da,), nio =1
Here, of course, other norms of the residual could be used.

This process is known as a line search, and 7, ; can conveniently be obtained by
using a regula falsi (or secant) procedure as illustrated in Fig 2.6. An obvious

{a) {b)

Fig. 2.6 Regula falsi applied to line search: (a) extrapolation; (b) interpolation.
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disadvantage of a line search is the need for several evaluations of ¥. However, the
acceleration of the overall convergence can be remarkable when applied to modified
or quasi-Newton methods. Indeed, line search is also useful in the full Newton
method by making the radius of attraction larger. A compromise frequently used'
is to undertake the search only if

Gig > e (dal) Wit (2.30)

n+1

where the tolerance ¢ is set between 0.5 and 0.8. This means that if the iteration
process directly resulted in a reduction of the residual to € or less of its original
value a line search is not used.

2.2.6 'Softening’ behaviour and displacement control

In applying the preceding to load control problems we have implicitly assumed that
the iteration is associated with positive increments of the forcing vector, f, in Eq. (2.5).
In some structural problems this is a set of loads that can be assumed to be propor-
tional to each other, so that one can write

Af, = AN, (2.31)

In many problems the situation will arise that no solution exists above a certain max-
imum value of f and that the real solution is a ‘softening’ branch, as shown in Fig. 2.1.
In such cases A\, will need to be negative unless the problem can be recast as one in
which the forcing can be applied by displacement control. In a simple case of a single
load it is easy to recast the general formulation to increments of a single prescribed
displacement and much effort has gone into such solutions. 1723

In all the successful approaches of incrementation of A\, the original problem of
Eq. (2.3) is rewritten as the solution of

¥, =Nafo—Pla, ) =0
with

a)1+l = a, + Aan (232)
and

A1 =N+ AN,
being included as variables in any increment. Now an additional equation (constraint)
needs to be provided to solve for the extra variable A\,.

This additional equation can take various forms. Riks' assumes that in each
increment

Aal Aa, + AN 11, = Al (2.33)

where A/ is a prescribed ‘length’ in the space of n + 1 dimensions. Crisfield'"** pro-
vides a more natural control on displacements, requiring that

AalAa, = A/’ (2.34)

These so-called arc-length and spherical path controls are but some of the possible
constraints.
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Direct addition of the constraint Eqs (2.33) or (2.34) to the system of Eqs (2.32) is
now possible and the previously described iterative methods could again be used.
However, the ‘tangent’ equation system would always lose its symmetry so an alter-
native procedure is generally used.

We note that for a given iteration i we can write quite generally the solution as

W, =Ny fo—Pa, )

e | o (239)
U, =, +dN, fy — Krda,
The solution increment for a may now be given as
A Ll ,
daf'1 = (K’T) [\I'lfwl. + a’/\fjfo} (2.36)
da, = da, + d\, da,
where
dil, = (Kr)~'®)
= (Ki) (2.37)

da, = (Ki)™'f,
Now an additional equation is cast using the constraint. Thus, for instance, with
Eq. (2.34) we have

(Aa! + da))" (Aa) ! +dal) = AP (2.38)

where Aa’~ ! is defined by Eq. (2.14). On substitution of Eq. (2.36) into Eq. (2.38) a
quadratic equation is available for the solution of the remaining unknown d\!, (which
may well turn out to be negative). Additional details may be found in references 11
and 24.

A procedure suggested by Bergan is somewhat different from those just
described. Here a fixed load increment A ), is first assumed and any of the previously
introduced iterative procedures are used for calculating the increment da’,. Now a new
increment A)), is calculated so that it minimizes a norm of the residual

20,23

[(AA;fO — P (AN, - Pfjﬁl)} = AP (2.39)
The result is thus computed from
darr
dAX:
and yields the solution
Tpi+1
AN, = foflg)'gl (2.40)

This quantity may again well be negative, requiring a load decrease, and it indeed
results in a rapid residual reduction in all cases, but precise control of displacement
magnitudes becomes more difficult. The interpretation of the Bergan method in a
one-dimensional example, shown in Fig. 2.7, is illuminating. Here it gives the exact
answers — with a displacement control, the magnitude of which is determined by
the initial A\, assumed to be the slope Kt used in the first iteration.
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Fig. 2.7 One-dimensional interpretation of the Bergan procedure.

2.2.7 Convergence criteria

In all the iterative processes described the numerical solution is only approximately
achieved and some tolerance limits have to be set to terminate the iteration. Since
finite precision arithmetic is used in all computer calculations, one can never achieve
a better solution than the round-off limit of the calculations.

Frequently, the criteria used involve a norm of the displacement parameter changes
||dal,|| or, more logically, that of the residuals ||®,, ,||. In the latter case the limit can
often be expressed as some tolerance of the norm of forces ||f,, (||. Thus, we may
require that

19511 < ellf 1] (2.41)
where ¢ is chosen as a small number, and
1/2
%] = (1) (2.42)

Other alternatives exist for choosing the comparison norm, and another option is to
use the residual of the first iteration as a basis. Thus,

1954111 < el |2, (2.43)

The error due to the incomplete solution of the discrete non-linear equations is of
course additive to the error of the discretization that we frequently measure in the
energy norm (see Chapter 14 of Volume 1). It is possible therefore to use the same
norm for bounding of the iteration process. We could, as a third option, require
that the error in the energy norm satisfy

dE' = (da] ;H)l/z << (dalT 111,11+1)1/2

n+1 n+1

<edE' (2.44)
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In each of the above forms, problem types exist where the right-hand-side norm is
zero. Thus a fourth form, which is quite general, is to compute the norm of the
element residuals. If the problem residual is obtained as a sum over elements as

‘I’nJrl = Z\I’ZH (245)
e

where e denotes an individual element and y¢ the residual from each element, we can
express the convergence criterion as

1,11l < ellwi il (2.40)

where

il =D 110wl (2.47)
e

Once a criterion is selected the problem still remains to choose an appropriate value
for . In cases where a full Newton scheme is used (and thus asymptotic quadratic
convergence should occur) the tolerance may be chosen at half the machine precision.
Thus if the precision of calculations is about 16 digits one may choose ¢ = 107® since
quadratic convergence assures that the next residual (in the absence of round-off)
would achieve full precision. For modified or quasi-Newton schemes such asymptotic
rates are not assured, necessitating more iterations to achieve high precision. In these
cases it is common practice by some to use much larger tolerance values (say 0.01 to
0.001). However, for problems where large numbers of steps are taken, instability in
the solution may occur if the convergence tolerance is too large. We recommend
therefore that whenever practical a tolerance of half machine precision be used.

2.2.8 General remarks - incremental and rate methods

The various iterative methods described provide an essential tool-kit for the solution
of non-linear problems in which finite element discretization has been used. The
precise choice of the optimal methodology is problem dependent and although
many comparative solution cost studies have been published!®!>* the differences
are often marginal. There is little doubt, however, that exact Newton—Raphson
processes (with line search) should be used when convergence is difficult to achieve.
Also the advantage of symmetric update matrices in the quasi-Newton procedures
frequently make these a very economical candidate. When non-symmetric tangent
moduli exist it may be better to consider one of the non-symmetric updates, for
example, a Broyden method.'"

We have not discussed in the preceding direct iterative methods such as the various
conjugate direction methods?’ 3! or dynamic relaxation methods in which an explicit
dynamic transient analysis (see Chapter 18 of Volume 1) is carried out to achieve a
steady-state solution.3>? These forms are often characterized by:

1. adiagonal or very sparse form of the matrix used in computing trial increments da
(and hence very low cost of an iteration) and
2. a significant number of total iterations and hence evaluations of the residual ¥.
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These opposing trends imply that such methods offer the potential to solve large
problems efficiently. However, to date such general solution procedures are effective
only in certain problems.**

One final remark concerns the size of increments Af or AX to be adopted. First, it
is clear that small increments reduce the total number of iterations required per
computational step, and in many applications automatic guidance on the size of
the increment to preserve a (nearly) constant number of iterations is needed. Here
such processes as the use of the ‘current stiffness parameter’ introduced by Bergan®
can be effective.

Second, if the behaviour is path dependent (e.g. as in plasticity-type constitutive
laws) the use of small increments is desirable to preserve accuracy in solution changes.
In this context, we have already emphasized the need for calculating such changes by
using always the accumulated Aa/, change and not in adding changes arising from
each iterative da’, step in an increment.

Third, if only a single Newton—Raphson iteration is used in each increment of
A\ then the procedure is equivalent to the solution of a standard rate problem
incrementally by direct forward integration. Here we note that if Eq. (2.3) is rewritten
as

P(a) = A (2.48)
we can, on differentiation with respect to A obtain

dP da

= 2t 2.49

da dx (2.49)

f(A) A

Possible divergence

Af4I x;oa-
o

Afy .

Al ;

Af1 V.

o Y

Fig. 2.8 Direct integration procedure.
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and write this as

da _
o K:'f, (2.50)

Incrementally, this may be written in an explicit form by using an Euler method as

Aa, = ANK7, £, (2.51)

This direct integration is illustrated in Fig. 2.8 and can frequently be divergent as well

as

being only conditionally stable as a result of the Euler explicit method used.

Obviously, other methods can be used to improve accuracy and stability. These
include Euler implicit schemes and Runge—Kutta procedures.
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Inelastic and non-linear materials

3.1 Introduction

In Chapter 1 we presented a framework for solving general problems in solid
mechanics. In this chapter we consider several classical models for describing the
behaviour of engineering materials. Each model we describe is given in a strain-
driven form in which a strain or strain increment obtained from each finite element
solution step is used to compute the stress needed to evaluate the internal force,
jBTc dQ as well as a tangent modulus matrix, or its approximation, for use in
constructing the tangent stiffness matrix. Quite generally in the study of small
deformation and inelastic materials (and indeed in some forms applied to large
deformation) the strain (or strain rate) or the stress is assumed to split into an additive
sum of parts. We can write this as

e=¢4¢ (3.1)
or

6=0"+¢ (3.2)
in which we shall generally assume that the elastic part is given by the linear model

£=D"'o (3.3)

in which D is the matrix of elastic moduli.

In the following sections we shall consider the problems of viscoelasticity,
plasticity, and general creep in quite general form. By using these general types it is
possible to present numerical solutions which accurately predict many physical
phenomena. We begin with viscoelasticity, where we illustrate the manner in which
we shall address the solution of problems given in a rate or differential form. This
rate form of course assumes time dependence and all viscoelastic phenomena are
indeed transient, with time playing an important part. We shall follow this section
with a description of plasticity models in which times does not explicitly arise and
the problems are time independent. However, we shall introduce for convenience a
rate description of the behaviour. This is adopted to allow use of the same kind of
algorithms for all forms discussed in this chapter.
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3.2 Viscoelasticity — history dependence of deformation

Viscoelastic phenomena are characterized by the fact that the rate at which inelastic
strains develop depends not only on the current state of stress and strain but, in
general, on the full history of their development. Thus, to determine the increment
of inelastic strain over a given time interval (or time step) it is necessary to know
the state of stress and strain at all preceding times. In the computation process
these can in fact be obtained and in principle the problem presents little theoretical
difficulty. Practical limitations appear immediately, however, that each computation
point must retain this history information — thus leading to very large storage
demands. In the context of linear viscoelasticity, means of overcoming this limitation
were introduced by Zienkiewicz et al." and White.? Extensions to include thermal
effects were also included in some of this early work.® Further considerations
which extend this approach are also discussed in earlier editions of this book.**

3.2.1 Linear models for viscoelasticity

The representation of a constitutive equation for linear Viscoeldsticity may be given in
the form of either a differential equation or an integral equation.®’ In a differential
model the constitutive equation may be written as a linear elastic part with an
added series of partial strains q. Accordingly, we write

( 1)08 + Z qu (34)

where for a linear model the partial stresses are solutions of the first-order differential
equations

¢ +T,q" =% (3.5)

with T,, a constant matrix of reciprocal relaxation times and D, D,, constant moduli
matrices. The presence of a split of stress as given by Eq. (3.2) is immediately evident
in the above. Each of the forms in Eq. (3.5) represents an elastic response in series with
a viscous response and is known as a Maxwell model. In terms of a spring—dashpot
model, a representation for the Maxwell material is shown in Fig. 3.1(a) for a
single stress component. Thus, the sum given by Eq. (3.4) describes a generalized
Maxwell solid in which several elements are assembled in a parallel form and the
D, term becomes a spring alone.

In an integral form the stress—strain behaviour may be written in a convolution
form as

! Ot
6 = D(1)£(0) + L D~ 1) 5o d (3.6)

where components of D(¢) are relaxation moduli functions.

Inverse relations may be given where the differential model is expressed as

&(r) = Joo(1) + f: It (1) (3.7)

m=1
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(a) (b)

Fig. 3.1 Spring—dashpot models for linear viscoelasticity: (a) Maxwell element; (b) Kelvin element.

where for a linear model the partial stresses r are solutions of
i v, =6 (3.8)

in which V,, are constant reciprocal retardation time parameters and J,, J,, constant
compliances (i.e. reciprocal moduli). Each partial stress corresponds to a solution in
which a linear elastic and a viscous response are combined in parallel to describe a
Kelvin model as shown in Fig. 3.1(b). The total model thus is a generalized Kelvin solid.
In an integral form the strain—stress constitutive relation may be written as
t
e = J(1)6(0) + J 3i—1) 2% a4y (3.9)

0 or
where J(7) are known as creep compliance functions.

The parameters in the two forms of the model are related. For example, the creep

compliances and relaxation moduli are related through
t t
J(1)D(0) +J J(t—1) 87]? df =D(1)J(0) +J D(r—1) 9J di' =1 (3.10)
0 ot 0 or'
as may ecasily be shown by applying, for example, Laplace transform theory to
Eqgs (3.6) and (3.9).

The above forms hold for isotropic and anisotropic linear viscoelastic materials.
Solutions may be obtained by using standard numerical techniques to solve the
constant coefficient differential or integral equations. Here we will proceed to describe
a solution for the isotropic case where specific numerical schemes are presented.
Generalization of the methods to the anisotropic case may be constructed by using
a similar approach and is left as an exercise to the reader.

3.2.2 Isotropic models

To describe in more detail the ideas presented above we consider here isotropic
models where we split the stress as

c=s+mp with p=Im'e (3.11)
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where s is the stress deviator,” p is the mean (pressure) stress and, for a three-
dimensional state of stress, m is given in Eq. (1.37). Similarly, a split of strain is
expressed as

ge=e+imd with O=m'se (3.12)

where e is the strain deviator and 6 is the volume change.

In the presentation given here, for simplicity we restrict the viscoelastic response to
deviatoric parts and assume pressure—volume response is given by the linear elastic
model

p =Ko (3.13)

where K is an elastic bulk modulus. A generalization to include viscoelastic behaviour
in this component also may be easily performed by using the method described below
for deviatoric components.

Differential equation model

The deviatoric part may be stated as differential equation models or in the form of
integral equations as described above. In the differential equation model the constitu-
tive equation may be written as

M
s=2G (qu + Z :umq(m>> (314)

m=1

in which p,, are dimensionless parameters satisfying

M
Z pom =1 (315)
m=0

and dimensionless partial deviatoric strains q<m> are obtained by solving

i+ Lqm e (3.16)
Afﬂ

in which A, are relaxation times. This form of the representation is again a generalized

Maxwell model (a set of Maxwell models in parallel).

Each differential equation set may be solved numerically by using any of the finite-
element-in-time methods described in Chapter 18 of Volume 1 (see Sec. 18.2). To
solve numerically we first define a set of discrete points, #;, at which we wish to
obtain the solution. For a time ¢,,; we assume the solution at all previous points
up to ¢, are known. Using a simple single-step method the solution for each partial
stress is given by:

oA 1= 0)AN
<1 + )qi’”ﬁ] = (1 —()\)) q) e, —e, (3.17)
m m

in which At =1¢,, | — ¢,

“In Volume 1 67 was used to denote the deviatoric stress, and & the deviatoric strain. Here we use the
alternate notation s and e to avoid the extra superscript d.
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We note that this form of the solution is given directly in a strain-driven form.
Accordingly, given the strain from any finite element solution step we can immedi-
ately compute the stresses by using Eqs (3.13), (3.14) and (3.17) in Eqgs (3.11) and
(3.12). Inserting the above into a Newton-type solution strategy requires the com-
putation of the tangent moduli. The tangent moduli for the viscoelastic model are
deduced from

_ 8611-&-1 _ asn-H +m apn+1

Kyl|,21= = 3.18
T|1+1 asn+1 aanrl aanrl ( )
The tangent part for the volumetric term is elastic and given by
0
6anﬁl _maanrl 0 n+1 :KmmT (319)

02, 11 00,1 08,14

Similarly, the tangent part for the deviatoric term is deduced from Eq. (3.17) as

8sl1+l 8SnJrl aen+l Y Hm
- =26 e+ S |1 3.20
Og,,1 Oe, 1 0%, 0 mZ:l (1 +9Az) d ( )
A

where 1, is defined in Eq. (1.37). Using the above, tangent moduli are expressed as

M
I
Krly 1= Kmm' +2G | 19 + Z #
m=1 1+
Am

and we note that the only difference from a linear elastic material is the replacement of
the elastic shear modulus by the viscoelastic term

I, (3.21)

M
GG+, M’gm
m=1 <1+)\)

This relation is independent of stress and strain and hence when it is used with a
Newton scheme it converges in one iteration (i.e. the residual of a second iteration
is numerically zero).

The set of first-order differential equations (3.16) may be integrated exactly for
specified strains, e. The integral for each term is given by

q" (1) = J’ exp[— (1 — 1)/, % dr (3.22)

An advantage to the differential equation form, however, is that it may be extended to
include ageing or other nonlinear effects by making the parameters time or solution
dependent. The exact solution to the differential equations for such a situation will
then involve integrating factors, leading to more involved expressions. In the follow-
ing parts of this section we consider the integral equation form and its numerical solu-
tion for /inear viscoelastic behaviour. Models and their solutions for more general
cases are left as an exercise for the reader.
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Fig. 3.2 Typical viscoelastic relaxation function.

Integral equation model

The integral equation form for the deviatoric stresses is expressed in terms of a relaxa-
tion modulus function which is defined by an idealized experiment in which, at time
zero (¢ = 0), a specimen is subjected to suddenly applied and constant strain, e;, and
the stress response, s(f), is measured. For a linear material a unique relation is
obtained which is independent of the magnitude of the applied strain. This relation
may be written as

s(1) = 2G(1) e (3.23)

where G(¢) is defined as the shear relaxation modulus function. A typical relaxation
function is shown in Fig. 3.2. The function is shown on a logarithmic time scale
since typical materials have time effects which cover wide ranges in time.

Using linearity and superposition for an arbitrary state of strain yields the integral
equation specified as

s(t) = Jioc 2G(t— 1) % dr (3.24)

We note that the above form is a generalization to the Maxwell material. However,
the integral equation form may be specialized to the generalized Maxwell model by
assuming the shear relaxation modulus function in a Prony series form

M
Ho + Z Hom exp(— l/)‘m) (325)

m=1

G(=G

where the p, satisfy Eq. (3.15).

Solution to integral equation with Prony series
The solution to the viscoelastic model is performed for a set of discrete points #.
Thus, again assuming that all solutions are available up to time ¢,, we desire to
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Fig. 3.3 Standard linear viscoelastic solid: (a) model for standard solid; (b) relaxation function.

compute the next step for time #,, ;. Solution of the general form would require
summation over all previous time steps for each new time; however, by using
the generalized Maxwell model we may reduce the solution to a recursion formula
in which each new solution is computed by a simple update of the previous
solution.

We will consider a special case of the generalized Maxwell material in which the
number of terms M is equal to 1 [which defines a standard linear solid, Fig. 3.3(a)].
The addition of more terms is easily performed from the one-term solution. Accord-
ingly, we take

G1) = Glug + m exp(—t/\)] (3.26)

where p + ¢ = 1. For the standard solid only a limited range of time can be consid-
ered, as can be observed from Fig. 3.3(b) for the model given by

G(t) = G[0.15+ 0.85exp(—1)]

To consider a wider range it is necessary to use terms in which the A, cover the total
time by using at least one term for each decade of time (a decade being one unit on the
log;, time scale).

Substitution of Eq. (3.26) into Eq. (3.24) yields

! Oe
() =26 [ [po+ mesp(—(0-1)/A)]) 55 df (3.27)
which may be split and expressed as
! ! ae !
S(1) = 26 o e(1) + 2G J_ exp(— (1 = 1)/) g di
= 2G [po&(t) + m q" (1)) (3.28)

where we note that q(l) is identical to the form given in Eq. (3.22). Thus use of a Prony
series for G(¢) is identical to solving the differential equation model exactly.
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In applications involving a linear viscoelastic model, it is usually assumed that the
material is undisturbed until a time identified as zero. At time zero a strain may be
suddenly applied and then varied over subsequent time. To evaluate a solution at
time ¢, the integral representation for the model may be simplified by dividing
the integral into

JM‘@dﬂ:JO mdﬂ+r+ﬁdﬂ+J Odf+rwlodf (3.29)

Ill
—00 ) 0" t,

In each analysis considered here the material is assumed to be unstrained before the
time denoted as zero. Thus, the first term on the right-hand side is zero, the second
term includes a jump term associated with e, at time zero, and the last two terms
cover the subsequent history of strain. The result of this separation when applied
to Eq. (3.27) gives the recursion®

q\'); = exp(—Ar/A)q)) + Aqh (3.30)
where
(1) Lyt 1 , Oe ,
Aq = l exp[—(ty1 — f)/)\l]ﬁ ds (3.31)

and q(()]> = eg.
To obtain a numerical solution, we approximate the strain rate in each time
increment by a constant to obtain

1 [n+l
8aly = 5; [ explo i = /Nl - e d (3.32)
The integral may now be evaluated directly over each time step as’
m _M — A D
Aqn+1 - E [1 - exp(_At/)‘l)](e)1+l - en) - Aqn+l(el1+l - en) (333)

This approximation is singular for zero time steps; however, the limit value at Ar =0
is one. Thus, for small time steps a series expansion may be used to yield accurate

values, giving
1 /At 1 (AN 1 (A
AV — 12 (=)= (=) - 3.34
D1 ACWAELCYArACWAl (3.34)

Using a few terms for very small time increment ratios yields numerically correct
answers (to computer precision). Once the time increment ratio is larger than a certain
small value the representation given in Eq. (3.33) is used directly.

The above form gives a recursion which is stable for small and large time steps and
produces very smooth transitions under variable time steps.

A numerical approximation to Eq. (3.32) in which the integrand of Eq. (3.31) is
evaluated at 7,/ has also been used with success. In the above recursion we
note that a zero and infinite value of a time step produces a correct instantancous
and zero response, respectively, and thus is asymptotically accurate at both limits.
The use of finite difference approximations on the differential equation form directly
does not produce this property unless § = 1 and for this value is much less accurate
than the solution given by Eq. (3.33).
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Using the recursion formula, the constitutive equation now has the simple form

Spe1 = 2G[1pe, 4 +M1‘L(zlll] (3.35)

The process may also be extended to include effects of temperature on relaxation
times for use with thermorheologically simple materials.?

The implementation of the above viscoelastic model into a Newton type solution
process again requires the computation of a tangent tensor. Accordingly, for the
deviatoric part we need to compute

8SI1+ 1 _ asn+ 1
88,1 +1 aen +1

I, (3.36)

The partial derivative with respect to the deviatoric stress follows from Eq. (3.35) as

0s 8q<1)
—=2 I .
96 Glpol+ 96 (3.37)
Using Eq. (3.33) the derivative of the last term becomes
aqil) 1
Wil - A !1+1(Al) (338)
Thus, the tangent tensor is given by
(95” 1
do = 26l + g Aq, (A0 (3.39)

Again, the only modification from a linear elastic material is the substitution of the
elastic shear modulus by

G — Gluo + 1 Aql) (AD)] (3.40)

We note that for zero At the full elastic modulus is recovered, whereas for very large
increments the equilibrium modulus p G is used. Since the material is linear, use of
this tangent modulus term again leads to convergence in one iteration (the second
iteration produces a numerically zero residual).

The inclusion of more terms in the series reduces to evalucmon of additional q,ﬁ)l
integral recursions. Computer storage is needed to retain the q for each solution
(quadrature) point in the problem and each term in the series.

Example: a thick-walled cylinder subjected to internal pressure

To illustrate the importance of proper element selection when performing analyses in
which material behaviour approaches a near incompressible situation we consider the
case of internal pressure on a thick-walled cylinder. The material is considered to be
isotropic and modelled by viscoelastic response in deviatoric stress—strain only.
Material properties are: modulus if elasticity, £ = 1000; Poisson’s ratio, v = 0.3;
w1 = 0.99; and A\; = 1. Thus, the viscoelastic relaxation function is given by

G(1) = 13%0 [0.01 4 0.99 exp(—1)]

The ratio of the bulk modulus to shear modulus for instantaneous loading is given by
K/G(0) =2.167 and for long time loading by K/G(c0) = 216.7 which indicates a
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Fig. 3.4 Mesh and loads for internal pressure on a thick-walled cylinder: (a) four-noded quadrilaterals;
(b) nine-noded quadrilaterals.

near incompressible behaviour for sustained loading cases (the effective Poisson ratio
for infinite time is 0.498). The response for a suddenly applied internal pressure,
p =10, is computed to time 20 by using both displacement and the mixed element
described in Chapter 1. Quadrilateral elements with four nodes (Q4) and nine
nodes (Q9) are considered, and meshes with equivalent nodal forces are shown in
Fig. 3.4. The exact solution to this problem is one-dimensional and, since all radial
boundary conditions are traction ones, the stress distribution should be time indepen-
dent. During the early part of the solution, when the response is still in the compres-
sible range, the solutions from the two formulations agree well with this exact
solution. However, during the latter part of the solution the answers from a displace-
ment element diverge because of near incompressibility effects, whereas those from a
mixed element do not. The distribution of quadrature point radial stresses at time
t = 20 is shown in Fig. 3.5 where the highly oscillatory response of the displacement
form is clearly evident. We note that extrapolation to reduced quadrature points

10 10
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@ 17} X o
= 10 s -10— x o
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(a) (b)

Fig. 3.5 Radial stress for internal pressure on a thick-walled cylinder: (a) mixed model; (b) displacement
model.
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would avoid these oscillations; however, use of fully reduced integration would lead
to singularity in the stiffness matrix (as shown in Volume 1) and selective reduced
integration is difficult to use with general non-linear material behaviour. Thus, for
general applications the use of mixed elements is preferred.

3.2.3 Solution by analogies

The labour of step-by-step solutions for linear viscoelastic media can, on occasion, be
substantially reduced. In the case of a homogeneous structure with linear isotropic
viscoelasticity and constant Poisson ratio operator, the McHenry—Alfrey analogies
allow single-step elastic solutions to be used to obtain stresses and displacements at
a given time by the use of equivalent loads, displacements and temperatures.”'°

Some extensions of these analogies have been proposed by Hilton and Russell.'!
Further, when subjected to steady loads and when strains tend to a constant value
at an infinite time, it is possible to determine the final stress distribution even in
cases where the above analogies are not applicable. Thus, for instance, where the
viscoelastic properties are temperature dependent and the structure is subject to a
system of loads and temperatures which remain constant with time, long-term
‘equivalent’ elastic constants can be found and the problem solved as a single, non-
homogeneous elastic one.'?

The viscoelastic problem is a particular case of a creep phenomenon to which we
shall return in Sect. 3.3 using some other classical non-linear models to represent
material behaviour.

3.3 Classical time-independent plasticity theory

Classical ‘plastic’ behaviour of solids is characterized by a non-unique stress—strain
relationship which is independent of the rate of loading but does depend on loading
sequence that may be conveniently represented as a process evolving in time. Indeed,
one definition of plasticity is the presence of irrecoverable strains on load removal. If
uniaxial behaviour of a material is considered, as shown in Fig. 3.6(a), a non-linear
relationship on loading alone does not determine whether non-linear elastic or plastic
behaviour is exhibited. Unloading will immediately discover the difference, with an
elastic material following the same path and a plastic material showing a history-
dependent different path. We have referred to non-linearity elasticity already in
Sect. 1.2 [see Eq. (1.36)] and will not give further attention to it here as the techniques
used for plasticity problems or non-linear elasticity show great similarity. Represen-
tation of non-linear elastic behaviour for finite deformation applications is more
complex as we shall show in Chapter 10.

Some materials show a nearly ideal plastic behaviour in which a limiting yield
stress, Y (or o), exists at which the strains are indeterminate. For all stresses
below such yield, a linear (or non-linear) elastic relationship is assumed, Fig. 3.6(b)
illustrates this. A further refinement of this model is one of a hardening/softening
plastic material in which the yield stress depends on some parameter x (such as the



Classical time-independent plasticity theory 49

SA CA
Loading Loading _
/ AT
//(( Unloading Unloading
Non-linear Plastic 6, = constant
elastic o 7 -
€ €
(a) (b)
oA
/
o K
g 6, =0, (")
4
€
(c)

Fig. 3.6 Uniaxial behaviour of materials: (a) non-linear elastic and plastic behaviour; (b) ideal plasticity;

(c) strain hardening plasticity.

accumulated plastic strain ) [Fig. 3.6(c)]. It is with such kinds of plasticity that this

section is concerned and for which much theory has been develope

41314

In a multiaxial rather than a uniaxial state of stress the concept of yield needs to
be generalized. It is important to note that in the following development of
results in a matrix form all nine tensor components are used instead of the six
‘engineering’ component form used previously. To distinguish between the two we
introduce an underbar on the symbol for all nine-component forms. Thus, we shall

use:
6=[o, o,
c=[o. o
e=[ey g
e=[ec g

O; Oxy Oy
Oz Oxy Opx
€ Txy Tz
g€ € Xy € »x

O-Z.\' ] T
T
Uyz Uzy Ozx Ox: ]
(3.41)
T
Vx|
T

gyZ 6\Zy 6\Z)C €XZ ]

in which v; = 2¢;;. The transformations between the nine- and six-component forms

needed later are obtained by

g =Pse

using

and

6=Pls (3.42)



50

Inelastic and non-linear materials

where

20 0 0 0 0 0 0 07
0200 00O0TO0TU0O
r 11002 000 0 0O

P =-
210 0 01 1.0 0 0O
000 0 O0OT1T1TUO0FDO
L0 OOO OO0 0 1 1]

Accordingly, we first make all computations by using the nine ‘tensor’ components of
stress and strain and only at the end do we reduce the computations to expressions in
terms of the six independent ‘engineering’ quantities using P. This will permit final
expressions for strain and equilibrium to be written in terms of B as in all previous
developments. In addition we note that:

P'IP=P'P=1, with I,= (3.43)

1
2 1
(see Section 12.2, Volume 1).

3.3.1 Yield functions

It is quite generally postulated, as an experimental fact, that yielding can occur only if
the stress satisfies the general yield criterion

F(§7 K, K’) =0 (344)

GOo (82) A

Yield
surface

Elastic

<~— F (04,05, %)
behaviour e

o1 (g1)

Fig. 3.7 Yield surface and normality criterion in two-dimensional stress space.
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where ¢ denotes a matrix form with all nine components of stress, k represents
kinematic hardening parameters and x an isotropic hardening parameter.'> We shall
discuss these particular sets of parameters later but, of course, many other types of
parameters also can be used to define hardening.

This yield condition can be visualized as a surface in an n-dimensional space of
stress with the position and size of the surface dependent on the instantaneous
value of the parameters k and « (Fig. 3.7).

3.3.2 Flow rule (normality principle)

Von Mises first suggested that basic behaviour defining the plastic strain increments is
related to the yield surface.'> Heuristic arguments for the validity of the relationship
proposed have been given by various workers in the field'®~** and at the present time
the following hypothesis appears to be generally accepted for many materials; if £P
denotes the components of the plastic strain tensor the rate of plastic strain is assumed
to be given by”

PP = \F, (3.45)
where the notation
OF
Fq= % (3.46)

is introduced. In the above, X is a proportionality constant, as yet undetermined,
often referred to as the ‘plastic consistency’ parameter. During sustained plastic
deformation we must have

F=0 and A>0 (3.47)

whereas during elastic loading/unloading A =0 and F # 0 leading to a general
constraint condition in Kuhn—Tucker form'*

FA=0 (3.48)

The above rule is known as the normality principle because relation (3.45) can be
interpreted as requiring the plastic strain rate components to be normal to the yield
surface in the space of nine stress and strain dimensions.

Restrictions of the above rule can be removed by specifying separately a plastic flow
rule potential

0 =0(s, k) (3.49)
which defines the plastic strain rate similarly to Eq. (3.45); that is, giving this as
P =10,  A>0 (3.50)

* Some authors prefer to write Eq. (3.45) in an incremental form
de? =dAFg4
where then deP = £P dz, and 1 is some pseudo-time variable. Here we prefer the rate form to permit use of

common solution algorithms in which dg will denote an increment in a Newton-type solution. (Also note
the difference in notation between a small increment ‘d” and a differential ‘d’.)
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The particular case of Q = F is known as associative plasticity. When this relation is
not satisfied the plasticity is non-associative. In what follows this more general form
will be considered initially (reductions to the associative case follow by simple sub-
stitution of Q = F).

The satisfaction of the normality rule for the associative case is essential for proving
so called upper and lower bound theorems of plasticity as well as uniqueness. In the
non-associative case the upper and lower bound do not exist and indeed it is not
certain that the solutions are always unique. This does not prevent the validity of
non-associated rules as it is well known that in frictional materials, for instance,
uniqueness is seldom achieved but the existence of friction cannot be denied.

3.3.3 Hardening/softening rules

Isotropic hardening

The parameters k and x must also be determined from rate equations and define
hardening (or softening) of the plastic behaviour of the material. The evolution of
k, govern the size of the yield surface is commonly related to the rate of plastic
work or directly to the consistency parameter. If related to the rate of plastic work
k has dimensions of stress and a relation of the type

f=0" = Y(k)e (3.51)
is used to match behaviour to a uniaxial tension or compression result. The slope
oY
A=—
ok

provides a modulus defining instantaneous isotropic hardening.
In the second approach « is dimensionless (e.g., an accumulated plastic strain”)
and is related directly to the consistency parameter using

(3.52)

. .p\T - p11/2 ‘1 AT 1/2

f=[E")TE"] = X060, (3.53)
A constitutive equation is then introduced to match uniaxial results. For example, a
simple linear form is given by

Uy(’i) =0y + Hjk

where H, is a constant isotropic hardening modulus.
Kinematic hardening
A classical procedure to represent kinematic hardening was introduced by Prager®

and modified by Ziegler.”® Here the stress in each yield surface is replaced by a
linear relation in terms of a ‘back stress’ k as

§=06—K (3.54)
with the yield function now given as

F(o—k k) =F(gr) =0 (3.55)
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during plastic behaviour. We note that with this approach derivatives of the yield
surface differ only by a sign and are given by

Fo=Fg=—Fy (3.56)

Accordingly, the yield surface will now translate, and if isotropic hardening is present
will also expand or contract, during plastic loading.

A rate equation may be specified most directly by introducing a conjugate work
variable p from which the hardening parameter k is deduced by using a hardening
potential 7. This may be stated as

K= —Hg (3.57)

which is completely analogous to use of an elastic energy to relate ¢ and £°. A rate
equation may be expressed now as

p=X0, (3.58)

It is immediately obvious that here also we have two possibilities. Using Q in the
above expression defines a non-associative hardening, whereas replacing Q by F
would give an associative hardening. Thus for a fully associative model we require
that F be used to define both the plastic potential and the hardening. In such a
case the relations of plasticity also may be deduced by using the principle of maximum
plastic dissipation.">'****" A quadratic form for the hardening potential may be
adopted and written as

HZ%ET@J} (3.59)

in which H, is assumed to be an invertible set of constant hardening parameters. Now
B may be eliminated to give the simple rate form

k= A 22— im0, (3.60)
Ok =
Use of a linear shift in relation (3.54) simplifies this, noting Eq. (3.56), to
k= XH, 0, (3.61)

In our subsequent discussion we shall usually assume a general quadratic model for
both elastic and hardening potentials. For a more general treatment the reader is
referred to references 14 and 28.

Another approach to kinematic hardening was introduced by Armstrong and
Frederick®® and provides a means of retaining smoother transitions from elastic to
inelastic behaviour during cyclic loading. Here the hardening is given as

K= )‘[Hk Q-S — Hy K] (3.62)

Applications of this approach are presented by Chaboche’’' and numerical

comparisons to a simpler approach using a generalized plasticity model’®* are
given by Auricchio and Taylor.**

Many other approaches have been proposed to represent classical hardening
behaviour and the reader is referred to the literature for additional information
and discussion.'” 23737 A physical procedure utilizing directly the finite element
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method is available to obtain both ideal plasticity and hardening. Here several ideal
plasticity components, each with different yield stress, are put in series and it will be
found that both hardening and softening behaviour can be obtained easily retaining
the properties so far described. This approach was named by many authors as an
‘overlay’ model*®**? and by others is described as a ‘sublayer’ model.

There are of course many other possibilities to define change in surfaces during the
process of loading and unloading. Here frictional soils present one of the most diffi-
cult materials to model and for the non-associative case we find it convenient to use
the generalized plasticity method described in Sect. 3.6.

3.3.4 Plastic stress—strain relations

To construct a constitutive model for plasticity, the strains are assumed to be divisible
into elastic and plastic parts given as

g=¢ +¢g° (3.63)

For linear elastic behaviour, the elastic strains are related to stresses by a symmetric
9 x 9 matrix of constants D. Differentiating Eq. (3.63) and incorporating the plastic
relation (3.50) we obtain

£=D"'6+10, (3.64)
The plastic strain (rate) will occur only if the ‘elastic’ stress changes
& =Di (3.65)

tends to put the stress outside the yield surface, that is, is in the plastic loading direc-
tion. If, on the other hand, this stress change is such that unloading occurs then of
course no plastic straining will be present, as illustrated for the one-dimensional
case in Fig 3.6. The test of the above relation is therefore crucial in differentiating
between loading and unloading operations and underlines the importance of the
straining path in computing stress changes.

When plastic loading is occurring the stresses are on the yield surface given by
Eq. (3.44). Differentiating this we can therefore write

i oF | + oF | St oF . " oF . 4t oF . 0
— — 0- —_— 0- N ... —_— KY —_— H N CEEEEY — H p—
v 0o, Ory ~ Ok, Ok

or
F=Fg6+Fyk—HA=0 (3.66)
in which we make the substitution

. OF
Hi=-Z = _F, & .
A o R (3.67)

where H; denotes an isotropic hardening modulus.
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For the case where kinematic hardening is introduced, using Eq. (3.54) we can
substitute Eq. (3.61) and modify Eq. (3.64) to

Dé—¢+ (D+H)AO, (3.68)
Similarly, introducing Eq. (3.56) into Eq. (3.66) we obtain
F=Fé—HA=0 (3.69)

Equations (3.68) and (3.69) now can be written in matrix form as

~ I (D+H, :
{]?)g}: I (D+H)0, {i} (3.70)

T
Fg —H,
The indeterminate constant A can now be eliminated (taking care not to multiply or
divide by H; or H, which are zero in ideal plasticity). To accomplish the elimination
we solve the first set of Eq. (3.70) for ¢, giving

¢=Di— (D1 H)OQA
and substitute into the second, yielding the expression
FiDé—[H+Fg(D+H,)QJA=0

Equation (3.64) now results in an explicit expansion that determines the stress changes
in terms of imposed strain changes. Using Eq. (3.43) this may now be reduced to a
form in which only six-independent components are present and expressed as”

6 =D} (3.71)
and
D;, =P'DP - %PTQQ’SFEQP
| (3.72)
=D —FPTQQ’SFEDP
where

H'=H;+F (D+H,)0,

The elasto-plastic matrix Dy, takes the place of the elasticity matrix Dy in a continuum
rate formulation. We note that in the absence of kinematic hardening it is possible to
make reductions to the six-component form for all the computations at the very begin-
ning. However, the manner in which the back stress enters the computation is not the
same as that for the plastic strain and would be necessary to scale the two differently to
make the general reduction. Thus, for the developments reported here we prefer to
carry out all calculations using the full nine-component form (or, in the case of plane
stress, to follow a four-component form) and make final reductions using Eq. (3.72).

*We shall show this step in more detail below for the J, plasticity model. In general, however, the final
result involves only the usual form of the D matrix and six independent components from the derivative
of the yield function.
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For a generalization of the above concepts to a yield surface possessing ‘corners’
where Q ; is indeterminate, the reader is referred to the work of Koiter'” or the
multiple surface treatments in Simo and Hughes.'*

An alternative procedure exists here simply by smoothing the corners. We shall
refer to it later in the context of the Mohr—Coulomb surface often used in geo-
mechanics and the procedure can be applied to any form of yield surface.

The continuum elasto-plastic matrix is symmetric only when plasticity is associative
and when kinematic hardening is symmetric. In general, non-associative materials
present stability difficulties, and special care is needed to use them effectively. Similar
difficulties occur if the hardening moduli are negative which, in fact, leads to a
softening behaviour. This is addressed further in Secs 3.11 and 3.12.

The elasto-plastic matrix given above is defined even for ideal plasticity when H;
and Hj, are zero. Direct use of the continuum tangent in an incremental finite element
context where the rates are approximated by

én+1A[%A8n+1 and 6n+1Al’r?‘JAG,1+1

1.40 1.41

was first made by Yamada et al.™ and Zienkiewicz et al.” However, this approach
does not give quadratic convergence when used in the Newton—Raphson scheme.
For the associative case we can introduce a discrete time integration algorithm in
order to develop an exact (numerically consistent) tangent which does produce
quadratic convergence when used in the Newton—Raphson iterative algorithm.

3.4 Computation of stress increments

We have emphasized that with the use of iterative procedures within a particular
increment of loading, it is important to compute always the stresses as

6,41 =0, + Ac, (3.73)

corresponding to the total change in displacement parameters Aaff and hence the total
strain change

Agk = BAak Aak = Z dal, (3.74)

which has accumulated in all previous iterations within the step. This point is of
considerable importance as constitutive models with path dependence (namely,
plasticity-type models) have different responses for loading and unloading. If a
decision on loading/unloading is based on the increment dal erroneous results will
be obtained. Such decisions must always be performed with respect to the total
increment Aaﬁ.

In terms of the elasto-plastic modulus matrix given by Eq. (3.72) this means that the
stresses have to be integrated as

Asf,
o | =o0,+ J D;, de (3.75)
0
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incorporating into Dy, the dependence on variables in a manner corresponding to
a linear increase of Asﬁ' (or Aaﬁ). Here, of course, all other rate equations have to
be suitably integrated, though this generally presents little additional difficulty.

Various procedures for integration of Eq. (3.75) have been adopted and can be
classified into explicit and implicit categories.

3.4.1 Explicit methods

In explicit procedures either a direct integration process is used or some form of the
Runge—Kutta process is adopted.* In the former the known increment Asﬁ is
subdivided into m intervals and the integral of Eq. (3.75) is replaced by direct summa-
tion, writing

1R~
Act = > Diym Aty (3.76)
Jj=0

where D, ;/,) denotes the tangent matrix computed for stresses and hardening
parameters updated from the previous increment in the sum.

This procedure, originally introduced in reference 43 and described in detail in
references 44 and 45, is known as subincrementation. Its accuracy increases with the
number of subincrements, m, used. In general it is difficult a priori to decide on this
number, and accuracy of prediction is not easy to determine.

Such integration will generally result in the stress change departing from the yield
surface by some margin. In problems such as those of ideal plasticity where the yield
surface forms a meaningful limit a proportional scaling of stresses (or return map) has
been practiced frequently to obtain stresses which are on the yield surface at all
times.*>*® In this process the effects of integrating the evolution equation for harden-
ing must also be treated.

A more precise explicit procedure is provided by use of a Runge—Kutta method.
Here, first an increment of Ag/2 is applied in a single-step explicit manner to obtain

Ae, 1= 1D, Ag, (3.77)

using the initial elasto-plastic matrix. This increment of stress (and corresponding
K, 1 1/2) is evaluated to compute D; . /> and finally we evaluate

AGH - DZ+1/2 A{—Zn (3.78)

This process has a second-order accuracy and, in addition, can give an estimate of
errors incurred as

Acn — 2A6n+1/2 (379)

If such stress errors exceed a certain norm the size of the increment can be
reduced. This approach is particularly useful for integration of non-associative
models or models without yield functions where ‘tangent’ matrices are simply
evaluated (see Sect. 3.6).
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3.4.2 Implicit methods

The integration of Eq. (3.75) can, of course, be written in an implicit form. For
instance, we could write in place of Eq. (3.75), during each iteration k, that
Ack, =[1-60)D;+6D* |Agk, | (3.80)

n+1

where here D}, denotes the value of the tangential matrix at the beginning of the time
step and DZ’il the current estimate to the tangential matrix at the end of the step.

This non-linear equation set could be solved by any of the procedures previously
described; however, derivatives of the tangent matrix are quite complex and in any
case a serious error is committed in the approximate form of Eq. (3.80). Further,
there is no guarantee that the stresses do not depart from the yield surface.

Return map algorithm

In 1964 a very simple algorithm was introduced simultaneously by Maenchen and
Sacks*’ and by Wilkins.*® This algorithm uses a two-step process to compute the
new stress and was originally implemented in an explicit time integration form,
thus requiring no explicit construction of an elasto-plastic tangent matrix; however,
later its versatility and robustness was demonstrated for implicit solutions.**>* The
steps of the algorithm are:

1. Perform a predictor step in which the entire increment of strain (for the present
discussion we omit the iteration counter k for simplicity)
&1 =& + Ag,

is used to compute frial stresses (denoted by superscript TR) assuming elastic
behaviour. Accordingly,

Q;{El :D(§n+1 *§E) (3.81)

where only an elastic modulus D is required.
2. Evaluate the yield function in terms of the trial stress and the values of the plastic
parameters at the previous time:

<0, elastic

F(a'™, Kk, k) = { (3.82)

>0, plastic

(a) For an elastic value of F set the current stress to the trial value, accordingly
TR
Cy+1=0n+1, Kpp1 =K, and Rn+1 = Kp

(b) For a plastic state solve a discretized set of plasticity rate equations (namely,
using any appropriate time integration method as described in Chapter 18 of
Volume 1) such that the final value of F,, ; is zero.

A plastic correction can be most easily developed by returning to the original
Eq. (3.64) and writing the relation for stress increment as

Ac, = D(Ag, — Agy) (3.83)
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Now integrating the plastic strain relation (3.50) using a form similar to that in
Eq. (3.80) yields

Agg = A\ [(1 - 9) Q.,g|l1 + 0Q,g|n+l} (384)

where A\ represents an approximation to the change in consistency parameter over
the time increment. Kinematic hardening is included by integrating Eq. (3.60) as

AKM = _AAHk[(l _G)Q,g|n+6Q,5|n+l] (385)
Finally, during the plastic solution we enforce
F,.1=0 (3.86)

thus ensuring that final values at ¢, ; satisfy the yield condition exactly.

The above solution process is particularly simple for § = 1 (backward difference or
Euler implicit) and now, eliminating Agb, we can write the above non-linear system in
residual form

B:T = A§n - D_l AQZ - A/\Q,g|:1+1

Rl = —H' Ak, — AXQ 141

rl=— rl;+1

and seek solutions which satisfy R, =0, R, =0 and r’ = 0. Any of the general
iterative schemes described in Chapter 2 can now be used. In particular, the full
Newton—Raphson process is convenient. Noting that Ag, is treated here as a specified

constant (actually, the Agﬁ from the current finite element solution), we can write, on
linearization

D'+ ANQ AXQ g 0,4 do’ R
MOy H'+AX04 04 de = { R (3.87)
FE F:; _Hi n+1 d)\I ri

where H; is the same hardening parameter as that obtained in Eq. (3.67). Some
complexity is introduced by the presence of the second derivatives of Q in Eq. (3.87)
and the term may be omitted for simplicity (although at the expense of asymptotic
quadratic convergence in the Newton—Raphson iteration). Analytical forms of such
second derivatives are available for frequently used potential surfaces.'*?*4°~>!
Appendix A also presents results for second derivatives of stress invariants.

It is important to note that the requirement that F,, | = —r [Eq. (3.87)] ensures
that the r' residual measures precisely the departure from the yield surface. This
measure is not available for any of the tangential forms if D¢, is adopted.

For the solution it is only necessary to compute d\' and update as

AN =" dN (3.88)
Jj=0

59



60 Inelastic and non-linear materials

This solution process can be done in precisely the same way as was done in establish-
ing Eq. (3.72). Thus, a solution may be constructed by defining the following:

R, (4]
B = 3 C =
R, - |k
EG Q“G
VF = 1, VO = - 3.89
v F, vo 0, (3.89)
D' 0 Q6 Quox
= + AN
0 H' Oxe Oux
and expressing Eq. (3.87) as
) | ) ) ) .
dgl — Aflgl _ EAflle I:(ZFI)TéleI _ rl] (390)
where
A" =H, + (VF)TA'v(' (3.91)

Immediately, we observe that at convergence R’ = 0 and r' = 0, thus, here we obtain
a zero stress increment. At this point we have computed a stress state o, which
satisfies the yield condition exactly. However, this stress, when substituted back
into the finite element residual [e.g. Eq. (1.24) or (1.44)] may not satisfy the equili-
brium condition and it is now necessary to compute a new iteration k and obtain a
new strain increment dgt from which the process is repeated. We note that inserting
this new increment into Eq. (3.87) will again result in a non-zero value for R, but that
R,. and r remain zero until subsequent iterations. Thus, Eq. (3.90) provides directly

now the required tangent matrix ﬁzp from
D, - | (de
=P 1 { 0} (3.92)

(o}~ sorerra ] {4} -

Thus, we find the tangent matrix sz is obtained from the upper diagonal block of Eq.
(3.92). We note that this development also follows exactly the procedure for comput-
ing Dg, in Eq. (3.72). At this stage the terms may once again be reduced to their six-
component form using P as indicated in Eq. (3.42).

Some remarks on the above algorithm are in order:

1. For non-associative plasticity (namely, Q # F) the return direction is not normal
to the yield surface. In this case no solution may exist for some strain increments
(in general, arbitrary selection of F and Q forms in non-associative does not assure
stability) and the iteration process will not converge.

2. For associative plasticity the normality principle is valid, requiring a convex yield
surface. In this case the above iteration process always converges for a hardening
material.

3. Convergence of the finite element equations may not always occur if more than
one quadrature point changes from elastic to plastic or from plastic to elastic in
subsequent iterations.
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Based on these comments it is evident that no universal method exists that can be used
with the many alternatives which can occur in practice. In the next several sections we
illustrate some formulations which employ the alternatives we have discussed above.

3.5 Isotropic plasticity models

We consider here some simple cases for isotropic plasticity-type models in which both
a yield function and a flow rule are used. For an isotropic material linear elastic
response may be expressed by moduli defined with two parameters. Here we shall
assume these to be the bulk and shear moduli, as used previously in the viscoelastic
section (Sec. 3.2). Accordingly, the stress at any discrete time ¢,,; is computed
from elastic strains in matrix form as

— _ e 1 Ty &
Gyi1 =PyriMm+s, = Kmmg, | +2G(1—-3mm )g,

=D (g1~ &) (3.93)
where the elastic modulus matrix for an isotropic material is given in the simple form
Q:KmmT+2G(lf%mmT) (3.94)

and I is the 9 x 9 identity matrix and m is the nine-component matrix
m=[1 1 1.0 0 0 0 0 0]
Using Eqs (3.42) and (3.43) immediately reduces the above to
D=Kmm' +2G(I, —imm") (3.95)

The above relation yields the stress at the current time provided we know the
current total strain and the current plastic strain values. The total strain is available
from the finite element equations using the current value of nodal displacements, and
the plastic strain is assumed to be computed with use of one of the algorithms given
above. In the discussion to follow we consider relations for various classical yield
surfaces.

3.5.1 Isotropic yield surfaces

The general procedures outlined in the previous section allow determination of the
tangent matrices for almost any yield surface applicable in practice. For an isotropic
material all functions can be represented in terms of the three stress invariants:”

L=0;=m'c

3]3 = Sl:/'Sijkl' = det§

where we can observe that definition of all the invariants is most easily performed in
indicial notation.

* Appendix A presents a summary of invariants and their derivatives.
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One useful form of these invariants for use in yield functions is given by*?

3o =1

5= /7 (3.97)
1/3
30 =sin™! (— 3‘[3J3> with —

<0<

ENE
ENE

25
Using these definitions the surface for several classical yield conditions can be given
as:
1. Tresca:
F=25cosf—Y(k)=0 (3.98)

=25 — \/EY(R) =|s| — \EY(H) =0 (3.99)

Both conditions 1 and 2 are well verified in metal plasticity. For soils, concrete and
other ‘frictional’ materials the Mohr—Coulomb or Drucker—Prager surfaces is
frequently used.*

3. Mohr—Coulomb:

2. Huber—von Mises:

. 1. .
F=o, s1n¢+5(cos€sm¢sm0> —ccosp =0 (3.100)
V3

where ¢(k) and ¢(k) are the cohesion and the angle of friction, respectively, which
can depend on an isotropic strain hardening parameter .
4. Drucker—Prager:

F =3d(k)o,+6—K(k)=0 (3.101)
where
, 2 sin ¢ 6 cos ¢
" V33 —sing) " V33 —sing)

and again ¢ and ¢ can depend on a strain hardening parameter.

These forms lead to a convenient definition of the gradients F, or Q 4, irrespective
of whether the surface is used as a yield condition or a flow potentlal Thus we can
always write

4 Fy— (3.102)

and upon noting that
00 _ o0 01 1ok
ds 0J, 06 2\/J, Oc
00 _ 00 01, 00 0% M0 10U,
o6 dJ, 06 ' 8J; O
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Table 3.1 Invariant derivatives for various yield conditions

Yield condition F, VLF,, JFy,
Tresca 0 2cosf(1 + tan 6 tan 36) V3sing
cos 30

Huber—von Mises 0 V3 0

1 1 3sin 6 + si 0
Mohr-Coulomb sing  5cos6|1 = tansin30 + = sing(tan30 - tand) %
Drucker—Prager 3a/ 1 0
Alternatively, we can always write:

80' (9]2 (9J3
Fo=F, =" +F; —=+F; — 3.104
.0 I He W2 oo W3 e ( )

which can be put into a matrix form as shown in Appendix A.

The values of the three derivatives with respect to the invariants are shown in
Table 3.1 for the various yield surfaces mentioned. The form of the various yield
surfaces given above is shown with respect to the principal stress space in Fig. 3.8,
though many more elaborate ones have been developed, particularly for soil
(geomechanics) problems.*> >

Drucker—Prager ¢ > 0 Mohr—Coulomb ¢ > 0
Gy =05=03

Fig. 3.8 Isotropic yield surfaces in principal stress space: (a) Drucker—Prager and von Mises; (b) Mohr-Coulomb
and Trexa.

3.5.2 J, model with isotropic and kinematic hardening
(Prandtl-Reuss equations)

Asnoted in Table 3.1 a particularly simple form results if we assume the yield function
involves only the second invariant of the deviatoric stresses J,. Here we present a
more detailed discussion of results obtained by using an associated form and the
return map algorithm. Since the yield function involves deviatoric quantities only
we can initially make all the calculations in terms of these. Accordingly, the elastic
deviatoric stress—strain relation is given as

s=2Ge"=2G(e—eP) (3.105)
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Continuum rate form

Before constructing the return map solution we first consider the form of the plasticity
equations in rate form for this simple model. The plastic deviatoric strain rates are
deduced from

COF .
) S _
& = X7 = A (3.106)

Including the effects of isotropic and kinematic hardening the Huber—von Mises
yield function may be expressed as

F=ls—x— /37 (x) =0 (3.107)

in which k are back stresses from kinematic hardening and & is an isotropic hardening
parameter. We assume linear isotropic hardening given by”

Y(k)=Yy+ H;k (3.108)

Here a rate of  is computed from a norm of the plastic strains, by using Eq. (3.53),
as

i= /3 (3.109)

in which the factor /2/3 is introduced to match uniaxial behaviour given by

Eq. (3.108).
On differentiation of F it will be found that
%—zz—g—gzg where gzé:z (3.110)
Using the above, the plastic strains are given by
¢ = Xn (3.111)
and, when substituted into a rate-of-stress relation, yield
$§=2G[é— An] (3.112)
A rate form for the kinematic hardening is taken as
k=2H\n (3.113)
The rate of the yield function becomes
F=n"(6—k —2HA\ (3.114)

and when combined with the other rate equations gives the expression for the plastic
consistency parameter as (noting that with the nine-component form n'n = 1)

.G
A:EQTQ (3.115)

*More general forms of hardening may be approximated by piecewise linear segments, thus making the
present formulation quite general.
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where
G'=G+1(H;+ Hy) (3.116)

Substitution of Eq. (3.115) into Eq. (3.112), and using Eq. (3.42) to reduce to the six-
component form, gives the rate form for stress—strain deviators as

2012

nnT} é (3.117)
We note that for perfect plasticity H; = H; = 0 leading to 2G/G* = 1 and, thus, the
elastic—plastic tangent for this special case is also here obtained.

Use of Eq. (3.117) in the rate form of Eq. (3.93) gives the final continuum elastic—
plastic tangent

1 2G
D;, = Kmm' +2G [10 - §mmT - nnT} (3.118)
This then establishes the well-known Prandtl-Reuss stress—strain relations general-
ized for linear isotropic and kinematic hardening.

Incremental return map form

The return map form for the equations is established by using a backward (Euler
implicit) difference form as described previously (see Sec. 3.4.2). Omitting the
subscript on the n+ 1 quantities the plastic strain equation becomes, using Eqs
(3.106) and (3.110),

e’ =el +Aln (3.119)

and the accumulated (effective) plastic strain

k=t 300 (3.120)
Thus, now the discrete constitutive equation is
s=2G(e—eP) (3.121)
the kinematic hardening is
K=K, +2H,A\n (3.122)
and the yield function is
F=ls—x—/3Y, -3 H,A0 (3.123)

where Y, = Yo + 1/2/3k,.
The trial stress, which establishes whether plastic behaviour occurs, is given by

s’ =2G(e—eh) (3.124)
which for situations where plasticity occurs permits the final stress to be given as

s=s " —2GAXn (3.125)
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Using the definition of n, we may now combine the stress and kinematic hardening
relations as

s—kln = |s"® —x,[n"™® — (2G+2 H,)Axn (3.126)
and noting from this that we must have
n'R=n (3.127)
we may solve the yield function directly for the consistency parameter as'***
TR
— —\/2/3Y,
Ax=E 5’2‘G* 3T, (3.128)

where G* is given by Eq. (3.116).
We can also easily establish the relations for the consistent tangent matrix for this
J, model. From Eqgs (3.121) and (3.119) we obtain the incremental expression
ds =2G[de —nd\ — AXdn] (3.129)

The increment of relation (3.127) gives14

2G

dn=dn"™ = ——[I-nn'] de (3.130)
s — K|
and from Eq. (3.128) we have
G

dA=§gng (3.131)

Substitution into Eq. (3.129) gives the consistent tangent matrix

2G AN G 2G AN T

ds=2G|(1—-———|l1- == ————— d 3.132
=26 (1 - o1 (@ ey ] 3132

This may now be expressed in terms of the total strains, combined with the elastic
volumetric term and reduced to six-components to give

. 2G AN G 2GA)

We here note also that when AX = 0 the tangent for the return map becomes the
continuum tangent, thus establishing consistency of form.

3.5.3 J, plane stress

The discussion in the previous part of this section may be applied to solve problems in
plane strain, axisymmetry, and general three-dimensional behaviour. In plane strain
and axisymmetric problems it is only necessary to note that some strain components
are zero. For problems in plane stress, however, it is necessary to modify the
algorithm to achieve an efficient solution process. In a plane stress process only the

four stresses o, o, 7, and 7,, need be considered. When considering deviatoric
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components, however, there are five components, sy, s,, 5., sy, and s,,.. The deviators
may be expressed in terms of the independent stresses as

Sy 2 -1 0 0
s | -1 2000 Z

s=q 8 g=3|-1 -1.00 Tf’ =P,o (3.134)
Sy, 0 0 30 ~
S 0 00 3] ™

The Huber—von Mises yield function may be written as
F=[(c—x)"PIP,(c- )]~ 3¥(x)<0 (3.135)
Expanding Eq. (3.135) gives the plane stress yield function
F=[@—go++ 153 +20)] 7=y (x) <0 (3.136)
where
Sy = Oy — Ky, Sy = 0y — Ky, Sxp = Ty — Ky Sy = Tyx — Fyy (3.137)

define stresses which are shifted by the kinematic hardening back stress. Plastic strain
rates may now be computed by direct differentiation of the yield function, giving

£, 2 -1 0 0 Oy
. é X |-1 200
EP=AF,={ " 3y =" YA =T A0 (3.138)
= Exy 2 | S ‘ 0 0 30 Txy |S|
Epx 0 0 0 3] 7,

where A, = P! P,. Similarly, the rate of the back stress for the kinematic hardening
case is given by

—K=— A, 3.139
g (3.139)

The elastic components are computed by using the plane stress relation. Accordingly,
for a plastic step the constitution is given by

6=D(i—&P) (3.140)
where for isotropic behaviour
1 v 0 0
E 1 0 0
p=—-"_1" (3.141)
l—v2 (0 0 1—-v 0
0 0 0 1—v

with E the modulus of elasticity and v the Poisson’s ratio.
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We note that for a J, model the volumetric plastic strain must always be zero;
consequently, we can complete the determination of plastic strains at any instant
by using

e=—-el-¢) (3.142)

This may be combined with the elastic strain given by

£s = — % (ox+0,) (3.143)
to compute the total strain e, and, thus, the thickness change. The solution process
now follows the procedures given for the general return mapping case. A procedure
which utilizes a spectral transformation on the elastic and plastic parts is given in
references 14 and 50. The process given there is more elegant but lacks the clarity
of working directly with the stress and plastic strain increments.

3.6 Generalized plasticity — non-associative case

Plastic behaviour characterized by irreversibility of stress paths and the development
of permanent strain changes after a stress cycle can be described in a variety of ways.
One form of such description has been given in Sec. 3.3. Another general method is
presented here.

3.6.1 Non-associative case - frictional materials

This approach assumes a priori the existence of a rate process which may be written
directly as

6=D': (3.144)

in which the matrix D* depends not only on the stress ¢ and the state of parameters k,
but also on the direction of the applied stress (or strain) rate & (or £).°° A slightly less
ambitious description arises if we accept the dependence of D* only on two directions
— those of loading and unloading. If in the general stress space we specify a ‘loading’
direction by a unit vector n given at every point (and also depending on the state
parameters k), as shown in Fig. 3.9, we can describe plastic loading and unloading
by the sign of the projection n' 6. Thus

T. { >0 for loading
n —_

i (3.145)
<0 for unloading

while n" 6 = 0 is a neutral direction in which only elastic straining occurs. One can
now write quite generally that
6 pr—

{D’ﬂé for loading (3.146)

Dy for unloading

where the matrices Di and Dy; depend only on the state described by ¢ and k.
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G2 A

G (load)

G (unload)

Fig. 3.9 Loading and unloading directions in stress space.

The specification of Di and Dy; must be such that in the neutral direction of the
stress increment 6 the strain rates corresponding to this are equal. Thus we require

¢=(Dj)'6=D{'6 when n'6=0 (3.147)
A general way to achieve this end is to write
. _ 1 N _ 1
(Di)'=D"" +H—LQngT and (Dy)'=D' +H—UggUgT (3.148)

where D is the elastic matrix, ng; and ng; are arbitrary unit stress vectors for loading
and unloading directions, and H; and Hy are appropriate plastic moduli which in
general depend on ¢ and k.

The value of the tangent matrices D] and Dy{; can be obtained by direct inversion
if Hy jy # 0, but more generally can be deduced following procedures given in Sect
3.3.4 or can be written directly using the Sherman—Morrison—Woodbury formula® as:

1
Di =D--Dnyn'D  Hi =H +n'Dny (3.149)
L

This form resembles Eq. (3.72) and indeed its derivation is almost identical. We note
further that (D} )" is now well behaved for H, zero and a form identical to that of
perfect plasticity is represented. Of course, a similar process is used to obtain Dy;.

This simple and general description of generalized plasticity was introduced by
Mréz and Zienkiewicz.’** It allows:

1. the full model to be specified by a direct prescription of n, n, and H for loading and
unloading at any point of the stress space;

2. existence of plasticity in both loading and unloading directions;

3. relative simplicity for description of experimental results when these are complex
and when the existence of a yield surface of the kind encountered in ideal plasticity
is uncertain.

For the above reasons the generalized plasticity forms have proved useful in
describing the complex behaviour of soils.®*~%* Here other descriptions using various
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interpolations of n and moduli form a unique yield surface, known as bounding
surface plasticity models, are indeed particular forms of the above generalization
and have proved to be useful.®

Classical plasticity is indeed a special case of the generalized models. Here the yield

surface may be used to define a unit normal vector as

1
HZ*{FTF ]1/2 Fgq (3.150)
and the plastic potential may be used to define
1
n, = 0o ]1/2QG (3.151)

where once again some care must be exercised in defining the matrix notation. Sub-
stitution of such values for the unit vectors into Eq. (3.149) will of course retrieve
the original form of Eq. (3.72). However, interpretation of generalized plasticity in
classical terms is more difficult.

The success of generalized plasticity in practical applications has allowed many com-
plex phenomena of soil dynamics to be solved.®®®” We shall refer to such applications
later but in Fig. 3.10 we show how complex cyclic response with plastic loading and
unloading can be followed.

While we have specified initially the loading and unloading directions in terms of
the total stress rate ¢ this definition ceases to apply when strain softening occurs
and the plastic modulus H becomes negative. It is therefore more convenient to
check the loading or unloading direction by the elastic stress increment ¢° of

. Experimental . Computational model
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Fig. 3.10 A generalized plasticity model describing a very complex path, and comparison with experimental
data. Undrained two-way cyclic loading of Nigata sand.® (Note that in an undrained soil test the fluid restrains
all volumetric strains, and pore pressures develop; see Sec. 19.3.5 of Volume 1).
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Eq. (3.65) and to specify

T..[ >0 for loading
¢

no : (3.152)
<0 for unloading

This, of course, becomes identical to the previous definition of loading and unloading
in the case of hardening.

3.6.2 Associative case - J, generalized plasticity

Another modification to the classical rate-independent approach is one in which the
transition from an elastic to a fully plastic solution is accomplished with a smooth
transition. This approach is useful in improving the match with experimental data
for cyclic loading. A particularly simple form applicable to the J, model was
introduced by Lubliner.”>* In this approach, the yield function is modified to a
rate form directly and is expressed as

WF)F—X=0 (3.153)
where h(F) is given by the function
F
WF)=———mr—— 3.154
") = G et B (3.154)

in which H = H; + H,, and 8, 3 are two positive parameters with dimension of stress.
In particular, 5 is a distance between a /imit plastic state and the current radius of the
yield surface, and 6 is a parameter controlling the approach to the limit state with
increasing accumulated plastic strain.

On discretization and combination with the return map algorithm a rate-independent
process is evident and again only minor modifications to the algorithm presented
previously is necessary. A full description of the steps involved is given by Auricchio
and Taylor.** Their paper also includes a development for the non-linear kinematic
hardening model given in Eq. (3.62). In the case where the yield function is associative
(ie. F =) the use of the non-linear kinematic hardening model leads to an
unsymmetric tangent stiffness when used with the return map algorithm. On the
other hand, the generalized plasticity model is fully symmetric for this case.

In the next section we present further discussion on use of generalized plasticity to
model the behaviour of frictional materials. In general, these involve use of non-
associative models where the return map algorithm cannot be used effectively.

3.7 Some examples of plastic computation

The finite element discretization technique in plasticity problems follows precisely the
same procedures as those of corresponding elasticity problems. Any of the elements
already discussed can be used for problems in plane stress; however, for plane strain,
axisymmetry, and three-dimensional problems it is usually necessary to use elements
which perform well in constrained situations such as encountered for near incompressi-
bility. For this latter class of problems use of mixed elements is generally recommended,
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although elements and constitutive forms that permit use of reduced integration may
also be used.

The use of mixed elements is especially important in metal plasticity as the Huber—
von Mises flow rule does not permit any volume changes. As the extent of plasticity
spreads at the collapse load the deformation becomes nearly incompressible, and with
conventional (fully integrated) displacement elements the system locks and a true
collapse load cannot be obtained.® ™

Finally, we should remark that the possibility of solving plastic problems is not
limited to a displacement and mixed formulation alone. Equilibrium fields and,
indeed, most of the formulations described in Chapters 11 and 12 of Volume 1
form a suitable vehicle,”'~”® but owing to their convenient and easy interpretation
displacement and mixed forms are most commonly used.

3.7.1 Perforated plate - plane stress solutions

Figure 3.11 shows the configuration and the division into simple triangular and
quadrilateral elements. In this example plane stress conditions are assumed and

(a) (b)

[ []]]

(©) (d)

Fig. 3.11 Perforated plane stress tension strip: mesh used and development of plastic zones at loads of 0.55,
0.66,0.75,0.84,0.92, 0.98, 1.02 times g,,. (a) T3 triangles; (b) plastic zone spread; (c) Q4 quadrilaterals; (d) Q9
quadrilaterals.
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Fig. 3.12 Perforated plane stress tension strip: load deformation for strain hardening case (H = 225 kg/mm?).

solution is obtained for both ideal plasticity and strain hardening. This problem was
studied experimentally by Theocaris and Marketos’* and was first analysed using
finite element methods by Marcal and King” and Zienkiewicz et al.*' (See reference
5 for discussion on these early solutions.) The von Mises criterion is used and, in the
case of strain hardening, a constant slope of the uniaxial hardening curve, H, is
taken. Data for the problem, from reference 74, are E = 7000kg/mm?,
H = 225kg/mm’ and o, =243 kg/mm?. Poisson’s ratio is not given but is here
taken as in reference 41 as v = 0.3. To match a configuration considered in the
experimental study a strip with 200 mm width and 360 mm length containing a
central hole of 200 mm diameter. Using symmetry only one quadrant is discretized
as shown in Fig. 3.11. Displacement boundary restraints are imposed for normal
components on symmetry boundaries and the top boundary. Sliding is permitted,
to impose the necessary zero tangential traction boundary condition. Loading is
applied by a uniform non-zero normal displacement with equal increments. Dis-
placement elements of type T3, Q4, and Q9 are used with the same nodal layout.
Results for the three elements are nearly the same, with the extent of plastic
zones indicated for various loads in Fig. 3.11 obtained using the Q4 element. The
load—deformation characteristics of the problem are shown in Fig. 3.12 and com-
pared to experimental results. The strain ¢, is the peak value occurring at the
hole boundary. This plane stress problem is relatively insensitive to element type
and load increment size. Indeed, doubling the number of elements resulted in
small changes of all essential quantities.

3.7.2 Perforated plate - plane strain solutions

The problem described above is now analysed assuming a plane strain situation. Data
are the same as for the plane stress case except the lateral boundaries are also
restrained to create a zero normal displacement boundary condition. This increases
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Fig. 3.13 Limit load behaviour for plane strain perforated strip: (a) displacement (displ.) formulation results;
(b) mixed formulation results.

the confinement on the mesh and shows more clearly the locking condition cited
previously. In Fig. 3.13 we plot the resultant axial load for each load step in the
solution. Figure 3.13(a) shows results for the displacement model using T3, Q4,
and Q9 elements and it is evident that the T3 and Q4 elements result in an erroneous
increasing resultant load after the fully plastic state has developed. The Q9 element
shows a clear limit state and indicates that higher order elements are less prone to
locking (even though we have shown that for the fully incompressible state the Q9
displacement element will lock!). Figure 3.13(b) presents the same results for the
Q4/1 and Q9/3 mixed elements and both give a clear limit load after the fully plastic
state is reached.
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3.7.3 Steel pressure vessel

This final example, for which test results obtained by Dinno and Gill”® are available,
illustrates a practical application, and the objectives are twofold. First, we show that
this problem which can really be described as a thin shell can be adequately
represented by a limit number (53) of isoparametric quadratic elements. Indeed,
this model simulates well both the overall behaviour and the local stress concentration
effects [Fig. 3.14(a)]. Second, this problem is loaded by an internal pressure and a
solution is performed up to the ‘collapse’ point (where, because there is no hardening,
the strains increase without limit) by incrementing the pressure rather than displace-
ment. A comparison of calculated and measured deflections in Fig. 3.14(b) shows how
well the objectives are achieved.

3.8 Basic formulation of creep problems

The phenomenon of ‘creep’ is manifested by a time-dependent deformation under a
constant stress. Indeed the viscoelastic behaviour described in Sect. 3.2 is a particular
model for linear creep. Here we shall deal with some non-linear models. Thus, in
addition to an instantaneous strain, the material develops creep strains, &°, which
generally increase with duration of loading. The constitutive law of creep will usually
be of a form in which the rate of creep strain is defined as some function of stresses and
the total creep strains (£°), that is,

€= 86—8; = B(o, £°) (3.155)
If we consider the instantaneous strains are elastic (%), the total strain can be written
again in an additive form as
e=¢+¢ (3.156)
with
£=D"'¢ (3.157)

where we neglect any initial (thermal) strains or initial (residual) stresses. A special
case of this form was considered for linear viscoelasticity in Sec. 3.2. Here we
consider a more general non-linear approach commonly used in modelling behaviour
of metals at elevated temperatures and in modelling creep in cementitious materials.

We can again use any of the time integration schemes considered above and
approximate the constitutive equations in a form similar to that used in plasticity as

6,1 =D(gy1 —€41)
. . (3.158)
€1 =& + AZBnJrG
where B, ¢ is calculated as

Bn+9 = (1 - 0) Bn =+ 0[3;1+l
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Fig. 3.14 Steel pressure vessel: (a) element subdivision and spread of plastic zones; (b) vertical deflection at
point A with increasing pressure.
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On eliminating Ag® we have simply a non-linear equation
R”+1 =&,41 —D_16,1+] —SE—AIB,1+9:0 (3159)

The system of equations can be solved iteratively using, say the Newton—Raphson
procedure. Starting from some initial guess, say 6, ;| = 6, and an increment of strain
is given by the finite element process, the general iterative/incremental solution can be
written as

R™'=0=R— (D' +A1C,.,)dd,, (3.160)
where
op op
C =T === 3.161
i 66 n+0 86 n+1 ( )

Solving this set of equations until the residual R is zero we obtain a set of stresses 6, |
and tangent matrix

1

D, = [D"'+AC, ] (3.162)

which may once again be used to perform any needed iterations on the finite element
equilibrium equations. The iterative computation that follows is very similar to that
used in plasticity, but here At is an actual time and the solution becomes rate dependent.

While in plasticity we have generally used implicit (backward difference) pro-
cedures; here many simple alternatives are possible. In particular, two schemes with
a single iterative step are popular.

3.8.1 Fully explicit solutions

‘Initial strain’ procedure: 6 = 0
Here, from Eqgs (3.161) and (3.162) we see that

C,.1=0 and D,,, =D (3.163)
Thus, from Eq. (3.159) we obtain
(| :D[8ﬂ+l _sz_Aan] (3164)

which may be used in Eq. (1.19) of Chapter 1 to satisfy a discretized equilibrium
equation. We note that this form will lead to a standard elastic stiffness matrix.
This, of course, is equivalent to evaluating the increment of creep strain from the
initial stress values at each time 7, and is exceedingly simple to calculate. While the
process has been popular since the earliest days of finite elements’’ " it is obviously
less accurate for a finite step than other alternatives. Of course accuracy will improve
if small time steps are used in such calculations. Further, if the time step is too large,

unstable results will be obtained. Thus it is necessary for
At < Aty (3.165)

where At is determined in a suitable manner (see Chapter 18, Volume 1).
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A ‘rule of thumb’ that proves quite effective in practice is that the increment of
creep strain should not exceed one half the total elastic strain®

A[BEB,] P <L () e] '

(3.166)

Fully explicit process with modified stiffness: J <0<1
Here the main difference from the first explicit process is that the matrix C is not equal
to zero but within a single step is taken as a constant, that is,
op
C, ~0— 3.167

n+1 o ) ( )
This is equivalent to a modified Newton—Raphson scheme in which the tangent is
held constant at its initial value in the step. Now

=D A, ]

This process is more expensive than the simple explicit one previously mentioned,
as the finite element tangent matrix has to be formed and solved for every time step.
Further, such matrices can be non-symmetric, adding to computational expense.

Neither of the simplified iteration procedures described above give any attention to
errors introduced in the estimates of the creep strain. However, for accuracy the
iterative process with 6> % is recommended. Such full iterative procedures were
introduced by Cyr and Teter,’! and later by Zienkiewicz and co-workers.®?%3

We shall note that the process has much similarity with iterative solutions of plastic
problems of Sec. 3.3 in the case of viscoplasticity, which we shall discuss in the next
section.

3.9 Viscoplasticity — a generalization
3.9.1 General remarks

The purely plastic behaviour of solids postulated in Sec. 3.3 is probably a fiction as the
maximum stress that can be carried is invariably associated with the rate at which this
is applied. A purely elasto-plastic behaviour in a uniaxial loading is described in a
model of Fig. 3.15(a) in which the plastic strain rate is zero for stresses below yield,
that is,

eP =0 if j[o—0,/<0 and o] >0

and &P is indeterminate when o — o, = 0.

An elasto-viscoplastic material, on the other hand, can be modelled as shown in
Fig. 3.15(b), where a dashpot is placed in parallel with the plastic element. Now
stresses can exceed o, for strain rates other than zero.

The viscoplastic (or creep) strain rate is now given by a general expression

eP =~(¢(c —a,)) (3.168)
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eP#0 P20 T
6=0, 6>o0, 0 gff’
(at yield) (at yield) v
Fig. 3.15 (a) Elastoplastic; (b) elasto-viscoplastic; (c) series of elasto-viscoplastic models.

where the arbitrary function ¢ is such that
(¢p(c—0,))=0 if o -0,/ <0
<¢(J - Jy)> = ¢(o— Uy) if o — 0y| >0

The model suggested is, in fact, of a creep-type category described in the previous
sections and often is more realistic than that of classical plasticity.

A viscoplastic model for a general stress state is given here and follows precisely the
arguments of the plasticity section. In a three-dimensional context ¢ becomes a func-
tion of the yield condition F(e, k, k) defined in Eq. (3.44). If this is less than zero, no
‘plastic’ flow will occur. To include the viscoplastic behaviour we modify Eq. (3.44) as

(3.169)

V{(F)) =X =0 (3.170)
and use Eq. (3.45) to define the plastic strain. Equation (3.175) implies
0 ifF<0
F))= 3.171
0 ={0 0 rrad G

and -y is some ‘viscosity’ parameter. Once again associated or non-associated flows can
be invoked, depending on whether F = Q or not. Further, any of the yield surfaces
described in Sec. 3.3.1 and hardening forms described in Sec. 3.3.3 can be used to
define the appropriate flow in detail. For simplicity, ¢(F) = F™ where m is a positive
power often used to define the viscoplastic rate effects in Eq. (3.170).3

The concept of viscoplasticity in one of its earliest versions was introduced by
Bingham in 1922%° and a survey of such modelling is given in references 86 and 88.
The computational procedure of using the viscoplastic model can follow any of the
general methods described in Sec. 3.4. Early applications commonly used the straight-
forward Euler (explicit) method.®** The stability requirements for this approach
have been considered for several types of yield conditions by Cormeau.”* A tangential
process can again be used, but unless the viscoplastic flow is associated (F = Q), non-
symmetric systems of equations have to be solved at each step. Use of an explicit
method will yield solution for the associative and non-associative cases and the system
matrix remains symmetric. This process is thus similar to that of a modified Newton—
Raphson method (initial stress method) and is quite efficient. Indeed within the stability
limit it has been shown that use of an over relaxation method leads to rapid convergence.
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3.9.2 Iterative solution

The complete iterative solution scheme for viscoplasticity is identical to that used in
plasticity except for the use of Eq. (3.170) instead of Eq. (3.44). To underline this
similarity we consider the constitutive model without hardening and use the return
map implicit algorithm. The linearized relations are identical except for the treatment
of relation (3.175). The form becomes

1 i
D + A)\Q.GG Q,o dGi R;
T 1 0= ; (3.172)
¢ Fg -H; ——= dA r
’VAI n+1
where the discrete residual for Eq. (3.171) is given by
1
= —¢(F —— A\ 3.173
rﬂ (725( )’1 + 'YAZ n ( )
and
do
/I —
0= aF

Now the equations are almost identical to those of plasticity [see Eq. (3.87)], with
differences appearing only in the ¢ and 1/(yAt) terms.

Again, a consistent tangent can be obtained by elimination of the 4\’ and a general
iterative scheme is once more available.

Indeed, as expected, v At = oo will now correspond to the exact plasticity solution.
This will always be reached by any solution tending to steady state. However, for
transient situations this is not the case and use of finite values for y Az will invariably
lead to some rate effects being present in the solution.

The viscoplastic laws can easily be generalized to include a series of components, as
shown in Fig. 3.15(c). Now we write

AR A QU VR (3.179)

and again the standard formulation suffices. If, as shown in the last element of
Fig. 3.15(c), the plastic yield is set to zero, a ‘pure’ creep situation arises in which
flow occurs at all stress levels. If a finite value is in a term a corresponding
rate equation for the associated ).‘i must be used. This is similar to the Koiter
treatment for multi-surface plasticit‘y.”’95

The use of the Duvaut and Lions®® approach modifies the return map algorithm
for a rate-independent plasticity solution. Once this solution is available a
reduction in the value of A\ is computed to account for rate effects. The interested
reader should consult references 14 and 28 for additional information on this approach.

3.9.3 Creep of metals

If an associated form of viscoplasticity using the von Mises yield criterion of Eq. (3.99)
is considered the viscoplastic strain rate can be written as

_ sl _

vp
£
Je

An (3.175)



with the rate expressed again as

o —

A=
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If o, the yield stress, is set to zero we can write the above as

£ — 75117

a,) (3.176)
n (3.177)

and we obtain the well-known Norton—Soderberg creep law. In this, generally the
parameter v is a function of time, temperature, and the total creep strain (e.g. the
analogue to the plastic strain €P). For a survey of such laws the reader can consult

. . (¢
specialized references.”®?’

An example initially solved using a large number of triangular elements®’ is pre-
sented in Fig. 3.16, where a much smaller number of isoparametric quadrilaterals

. . . 9
are used in a general viscoplastic program.”
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Fig. 3.16 Creepin a pressure vessel: (a) mesh end effective stress contours at start of pressurization; (b) effec-

tive stress contours 3 h after pressurization.
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3.9.4 Soil mechanics applications

As we have already mentioned, the viscoplastic model provides a simple and effective
tool for the solution of plasticity problems in which transient effects are absent. This
includes many classical problems which have been solved in references 93 and 98, and
the reader is directed there for details. In this section some problems of soil mechanics
are discussed in which the facility of the process for solving non-associated behaviour
is demonstrated.”” The whole subject of the behaviour of soils and similar porous
media is one in which much yet needs to be done to formulate good constitutive

models. For a fuller discussion the reader is referred to texts, conferences, and
papers on the subject.!%1°!
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Fig. 3.17 Uniaxial, axisymmetric compression between rough plates: (a) mesh and problem; (b) pressure
displacement result; (c) plastic flow velocity patterns.
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One particular controversy centres on the ‘associated’ versus ‘non-associated’ nature
of soil behaviour. In the example of Fig. 3.17, dealing with an axisymmetric sample, the
effect of these different assumptions is investigated.*® Here a Mohr—Coulomb law is
used to describe the yield surface, and a similar form, but with a different friction
angle, ¢, is used in the plastic potential, thus reducing the plastic potential to the
Tresca form of Fig. 3.8 when ¢ = 0 and suppressing volumetric strain changes. As
can be seen from the results, only moderate changes in collapse load occur, although
very appreciable differences in plastic flow patterns exist.

Figure 3.18 shows a similar study carried out for an embankment. Here, despite

quite different flow patterns, a prediction of collapse load was almost unaffected by
the flow rate law assumed.
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(b)

Fig. 3.18 Embankment under action of gravity, relative plastic flow velocities at collapse, and effective shear
strain rate contours at collapse: (a) associative behaviour; (b) non-associative (zero volume change) behaviour.
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The non-associative plasticity, in essence caused by frictional behaviour, may lead
to non-uniqueness of solution. The equivalent viscoplastic form is, however, always
unique and hence viscoplasticity is on occasion used as a regularizing procedure.

3.10 Some special problems of brittle materials
3.10.1 The no-tension material

A hypothetical material capable of sustaining only compressive stresses and straining
without resistance in tension is in many respects similar to an ideal plastic material.
While in practice such an ideal material does not exist, it gives a reasonable approxima-
tion of the behaviour of randomly jointed rock and other granular materials. While an
explicit stress—strain relation cannot be generally written, it suffices to carry out the
analysis elastically and wherever tensile stresses develop to reduce these to zero. The
initial stress (modified Newton—Raphson) process here is natural and indeed was devel-
oped in this context.'” The steps of calculation are obvious but it is important to
remember that the principal tensile stresses have to be eliminated.

The ‘constitutive’ law as stated above can at best approximate to the true situation,
no account being taken of the closure of fissures on reapplication of compressive
stresses. However, these results certainly give a clear insight into the behaviour of
real rock structures.

An underground power station

Figure 3.19(a) and (b) shows an application of this model to a practical problem.'%* In
Fig. 3.19(a) an elastic solution is shown for stresses in the vicinity of an underground
power station with ‘rock bolt’ pre-stressing applied in the vicinity of the opening. The
zones in which tension exists are indicated. In Fig. 3.19(b) a no-tension solution is
given for the same problem, indicating the rather small general redistribution and
the zones where ‘cracking’ has occurred.

Reinforced concrete

A variant on this type of material may be one in which a finite tensile strength exists
but when this is once exceeded the strength drops to zero (on fissuring). Such an
analysis was used by Valliappan and Nath'® in the study of the behaviour of
reinforced concrete beams. Good correlation with experimental results for under-
reinforced beams (in which development of compressive yield is not important)
have been obtained. The beam is one for which test results were obtained by Krahl
et al.'™ Figure 3.20 shows some relevant results.

Much development work on the behaviour of reinforced concrete has taken place,
with various plasticity forms being introduced to allow for compressive failure and
procedures that take into account the crack-closing history. References 105 and
106 list some of the basic approaches on this subject.

The subject of analysis of reinforced concrete has proved to be of great importance
in recent years and publications in this field are proliferating. Publications 107 to 110
guide the reader to current practice in this field.
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Fig. 3.19 Underground power station: gravity and prestressing loads. (a) Elastic stresses; (b) ‘no-tension’
stresses.
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Fig. 3.20 Cracking of a reinforced concrete beam (maximum tensile strength 200 Ib/in?). Distribution of
stresses at various sections.'® (a) Mesh used; (b) section AA: (c) section BB: (d) section CC.

3.10.2 ‘Laminar’ material and joint elements

Another idealized material model is one that is assumed to be built up of a large
number of elastic and inelastic laminae. When under compression, these can transmit
shear stress parallel to their direction — providing this does not exceed the frictional
resistance. No tensile stresses can, however, be transmitted in the normal direction to
the laminae.

This idealized material has obvious uses in the study of rock masses with parallel
joints but has much wider applicability. Figure 3.21 shows a two-dimensional situa-
tion involving such a material. With a local coordinate axis x’ oriented in the direction
of the laminae we can write for a simple Coulomb friction joint

|7'X/y/| < ‘LLO'},/ lfO'y/ $0

3.178
oy =0 ifey, >0 ( )

for stresses at which purely elastic behaviour occurs. In the above, u is the friction co-
efficient applicable between the laminae.

If elastic stresses exceed the limits imposed the stresses have to be reduced to the
limiting values given above. The application of the initial stress process in this



Some special problems of brittle materials 87

y {.’//g

(a)

(b)

Fig. 3.21 'Laminar’ material: (a) general laminarity; (b) laminar in narrow joint.

context is again self-evident, and the problem is very similar to that implied in the
no-tension material of the previous section. At each step of elastic calculation, first
the existence of tensile stresses o, is checked and, if these develop, a corrective initial
stress reducing these and the shearing stresses to zero is applied. If o,/ stresses are
compressive, the absolute magnitude of the shearing stresses 7., are checked
again; if these exceed the value given by Eq. (3.178) they are reduced to their
proper limit.

However, such a procedure poses the question of the manner in which the stresses
are reduced, as two components have to be considered. It is, therefore, preferable to
use the statements of relations (3.178) as definitions of plastic yield surfaces (). The



88

Inelastic and non-linear materials

assumption of additional plastic potentials (Q) will now define the flow, and we note
that associated behaviour, with Eq. (3.178) used as the potential, will imply a simul-
taneous separation and sliding of the laminae (as the corresponding strain rates ¥,
and ¢, are finite). Non-associated plasticity (or viscoplasticity) techniques have there-
fore to be used. Once again, if stress reversal is possible it is necessary to note the
opening of the laminae, that is, the yield surface is made strain dependent.

In some instances the laminar behaviour is confined to a narrow joint between
relatively homogeneous elastic masses. This may well be of a nature of a geological
fault or a major crushed rock zone. In such cases it is convenient to use narrow,
generally rectangular elements whose geometry may be specified by mean coordinates
of two ends 4 and B [Fig. 3.21(b)] and the thickness. The element still has, however,
separate points of continuity (1-4) with the adjacent rock mass.''"!'? Such joint
elements can be simple rectangles, as shown here, but equally can take more complex
shapes if represented by using isoparametric coordinates.

Laminations may not be confined to one direction only — and indeed the inter-
laminar material itself may possess a plastic limit. The use of such multilaminate
models in the context of rock mechanics has proved very effective;''® with a
random distribution of laminations we return, of course, to a typical soil-like
material, and the possibilities of extending such models to obtain new and interesting
constitutive relations have been highlighted by Pande and Sharma.'

3.11 Non-uniqueness and localization in elasto-plastic
deformations

In the preceding sections the general processes of dealing with complex, non-linear
constitutive relations have been examined and some particular applications were
discussed. Clearly, the subject is large and of great practical importance; however,
presentation in a single chapter is not practical or possible. For different materials
alternate forms of constitutive relations can be proposed and experimentally verified.
Once such constitutive relations are available the processes of this chapter serve as a
guide for constructing effective numerical solution strategies. Indeed, it is possible to
build standard computing systems applicable to a wide variety of material properties
in which new specifications of behaviour may be inserted.
What must be restated once more is that, in non-linear problems:

1. non-uniqueness of solution may arise;
2. convergence can never be, a priori, guaranteed,;
3. the cost of solution is invariably much greater than it is in linear solutions.

Here, of course, the item of most serious concern is the first one, that is, that of non-
uniqueness, which could lead to a physically irrelevant solution even if numerical
convergence occurred and possibly large computational expense was incurred. Such
non-uniqueness may be due to several reasons in elasto-plastic computations:

1. the existence of corners in the yield (or potential) surfaces at which the gradients
are not uniquely defined;
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2. the use of a non-associated formulation'®!>116

in Sec. 3.9.4);
3. the development of strain softening and localization.

(to which we have already referred

117,118

The first problem is the least serious and can readily be avoided by modifying the
yield (or potential) surface forms to avoid corners. A simple modification of the
Mohr—Coulomb (or Tresca) surface expressions [Eq. (3.100)] is easily achieved by
writing

. a
F =0, sm¢—ccos¢+m (3.179)
where
2K
O = TR =K sn30
and
3 -—sing
3+sin¢

Figure 3.22 shows how the angular section of the Mohr—Coulomb surface in the IT
plane (constant ¢,,) now becomes rounded. Similar procedures have been suggested

by others.!"” An alternative to smoothing is to introduce a multisurface model and
14,28

use a solution process which gives unique results for a corner.

A C1

Fig. 3.22 II plane section of Mohr—Coulomb yield surface in principal stress space, with ¢ = 25° (solid line);
smooth approximation of Eq. (3.183) (dotted line).
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Much more serious are the second and third possible causes of non-uniqueness
mentioned above. Here, theoretical non-uniqueness can be avoided by considering
the plastic deformation to be a limit state of viscoplastic behaviour in a manner we
have already referred to in Sec. 3.9. Such a process, mathematically known as
regularization, has allowed us to obtain many realistic solutions for both non-
associative and strain softening behaviour in problems which are subjected to
steady-state or quasi-static loading, as already shown. For fully transient cases,
however, the process is quite delicate and much care is needed to obtain a valid
regularization.

However, on occasion (though not invariably), both forms of behaviour can lead to
localization phenomena where strain (and displacement) discontinuities develop.''¢~1%
The non-uniqueness can be particularly evident in strain softening plasticity. We
illustrate this in an example of Fig. 3.23 where a bar of length L, divided into elements
of length £, is subject to a uniformly increasing extension u. The material is initially
elastic with a modulus £ and after exceeding a stress of o, the yield stress softens
(plastically) with a negative modulus H.

A
/Jnloading and ‘
reloading Oy
(@) €
(e}
hWL—0
h/L=1
oy h/L=0.5
)r /L = 012 mL =025
ke o E=uL
®) [ e . /E(g E _1) !
4 LH

Fig. 3.23 Non-uniqueness: mesh size dependence in extension of a homogeneous bar with a strain softening
material. (Peak value of yield stress, o, perturbed in a single element). (a) Stress o versus strain ¢ for material,
(b) stress & versus average strain & (= u/L) assuming yielding in a single element of length h.
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The strain—stress relation is thus [Fig. (3.23(a)]
o=FEe if e<o,/E=c¢, (3.180)
and for increasing ¢ only,

c=0,—-H(c—¢)) if e>¢, (3.181)
For unloading from any plastic point the material behaves elastically as shown.
One possible solution is, of course, that in which all elements yield identically.
Plotting the applied stress versus the elongation strain € = u/ L the material behaviour
curve is simply obtained identically as shown in Fig. 3.23(b) (/L = 1). However, it is
equally possible that after reaching the maximum stress o, only one element
(probably one with infinitesimally smaller yield stress owing to computer round-
off ) continues into the plastic range while all the others unload elastically. The
total elongation strain is now given by
u o h(c—o))

E=T=F" " IH (3.182)
and as / tends to 0 then & tends to o/ E. Clearly, a multitude of solutions is possible for
any arbitrary element subdivision and in this trivial example a unique finite element
solution is impossible (with localization to a single element always occurring).
Further, the above simple ‘thought experiment’ points to another unacceptable
paradox implying the inadmissibility of the softening model specified with constant
softening modulus. The difficulties are as follows.

1. The behaviour seems to depend on the size (/) of the subdivision chosen (also
called a mesh sensitive result). Clearly this is unacceptable physically.

2. If the element size falls below a value given by &7 = HL/E only a catastrophic,
brittle, behaviour is possible without involving an unacceptable energy gain.

Similar difficulties can arise with non-associated plasticity which exhibits occasion-
ally an effectively strain softening behaviour in some circumstances (see reference
129).

The computational difficulties can be overcome to some extent by introducing
visco-plasticity as a start to any computation. Such regularization was introduced
as early as 1974” and was considered seriously by De Borst and co-authors.'®
However, most of the difficulties remain as steady state is approached.

The problem remains a serious line of research but two possible alternative
treatments have emerged. The first of these is physically difficult to accept but is
very effective in practice. This is the concept of properties which are labelled as
non-local. In such an approach the softening modulus is made dependent on the
element size. Many authors have contributed here, with the earliest being Bazant
and co-workers.'**!?* Other relevant references are 130 and 131.

The second approach, that of a concentrated discontinuity, is more elegant but, we
believe, computationally more difficult. It was first suggested by Simo, Oliver and
Armero in 19933 and extended in later publications.'>~ 1%

Both approaches allow strain and indeed displacement discontinuities to develop
following the brittle failure behaviour on which we have already remarked. In the

91
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Fig. 3.24 lllustration of a non-local approach (work dissipation in failure is assumed to be constant for all
elements): (a) an element in which localization is considered; (b) localization; (c) stress—strain curve showing
work dissipated in failure.

numerical application this limit is approached as element size decreases or alterna-
tively when stress singularities, such as corners, trigger this type of behaviour.

In the second approach, continuous plastic behaviour is not permitted and all
action is concentrated on discontinuity lines which have to be suitably placed.

A particular form of the non-local approach is illustrated in Fig. 3.24. Here we
examine in detail a unit width of an element in which the displacement discontinuity
is approximated. In the examples which we shall consider later this discontinuity is a
slip one with the ‘failure’ being modelled as shown. However an identical approach
has been used to model strain softening behaviour of concrete in cracking.'**!?

The most basic form of non-local behaviour assumes that the work (or energy)
expended in achieving the discontinuity must be the same whatever the dimension
h of the element. This work is equal to

1 1 h 1
aneyh %EUf,EZEO'yAU (3183)
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If this work is to be identical in all highly strained elements we will require
that

% = constant (3.184)

Such a requirement is easy to apply in an adaptive refinement process.

At this stage we can comment on the concentrated discontinuity approach of
Bazant and co-workers.'”*!? In this we shall simply assume that the displacement
increment of Eq. (3.183), that is, AU is permitted to occur only on a discontinuity
line and that its magnitude is strictly related to the energy density previously specified
in Eq. (3.183). In the next section we shall show how a very effective treatment and
capture of discontinuity can be made adaptively.

3.12 Adaptive refinement and localization (slip-line)
capture

3.12.1 Introduction

The simple discussion of localization phenomena given in the previous section is
sufficient we believe to convince the reader that with softening plastic behaviour
localization and indeed rapid failure will occur inevitably. Similar behaviour will
often be observed with ideal plasticity especially if large deformations are present
(see Chap. 10). Here, however, ‘brittle type’ of failure will be replaced by collapse
in which displacement can continue to increase without any increase of load. It is
well known that during such continuing displacement

1. the elastic strains will remain unchanged;

2. all displacement is confined to plastic mechanisms. Such mechanisms will
(frequently) involve discontinuous displacements, such as sliding, and will there-
fore involve localization.

To control and minimize the errors of the analysis it will be necessary to estimate
errors and adaptively remesh in each step of an elasto-plastic computation. This, of
course, implies a difficult and costly process. Nevertheless, many attempts to use
adaptive refinement were made and references 122, 130, and 137-143 provide a list
of some successful attempts.

3.12.2 Adaptive refinement based on energy norm error
estimates

In Chapters 14 and 15 of Volume | we provide a comprehensive survey of error
estimation and / refinement in adaptivity. Most of the procedures there described
could be applied with success to elasto-plastic analysis. One in particular, the recovery
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Fig. 3.25 Adaptive refinement applied to the problem of a perforated strip: (a) the geometry of the strip and
a very fine mesh are used to obtain an ‘exact’solution; (b) various stages of refinement aiming to achieve a 5%
energy norm, relative, error at each load increment (quadratic elements T6/3B/3D were used); (c) local
displacement results.

procedures for stress and strain, can be used very efficiently. Indeed, in references 144
and 145 the SPR and REP methods (see Chapter 14, Volume 1) are used successfully
to estimate the errors. In Fig. 3.25 we show an analysis of a tension strip using
procedures of Volume 1.
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Fig. 3.25 Continued.

It will be observed that as the load increases the refined mesh tends to capture a
solution in which displacements are localized. Note that in this solution T6/3B/3D
elements were used as these have an excellent performance in incompressibility and
may be incorporated easily into an adaptive process. As in the problem discussed
in Volume 1, we have attempted here to keep the error to 5% of the energy norm
in each refinement.

3.12.3 Alternate refinement using error indicators: discontinuity
capture

In the illustrative example of the previous section we have shown how a refinement on
the test of a specified energy norm error can indicate and capture discontinuity and
slip lines. Nevertheless the process is not economical and may require the use of a
very large number of elements. More direct processes have been developed for
adaptive refinement in high-speed fluid dynamics where shocks presenting very
similar discontinuity properties form. We shall describe the refinement procedures
in Volume 3 to which the interested reader may proceed. However, we give a brief
summary below.

The processes developed are based on the recognition that in certain directions the
unknown function which we are attempting to model exhibits higher gradient or
curvatures. High degree of refinement can be achieved economically in high gradient
areas with elongated elements. In such areas the smaller side of elements (/,,;,) is
placed across the discontinuity, and the larger side (/,,,,) in the direction parallel to
the discontinuity. We show such a directionality in Fig. 3.26. For determination of
gradients and curvatures, we shall require a scalar function to be considered. The
scalar variable which we frequently use in plasticity problems could be the absolute
displacement value

U= @u"w!? (3.185)
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Fig. 3.26 Elongation of elements used to model the nearly one-dimensional behaviour and the discontinuity.

The original refinement indicator of the type we are describing attempts to achieve
an equal interpolation error ensuring that in the major and minor direction the

equality
U U
minm—| =lmax——| = constant (3.186)
X
1 |max 2 |min

By fixing the value of the constant in the above equation and evaluating the approx-
imate curvatures and the ratio of stretching /4,y /fimin, of the function U immediately
we have sufficient data to design a new mesh from the existing one. The procedures for
such mesh generation are given in references 146 and 147, although other methods
can be adopted.

As an alternative to the above-mentioned procedure we can aim at limiting the first
derivative of U by making

h %Z = constant (3.187)

For this procedure it is not easy to evaluate the stretching ratio. However, the first-
derivative condition is useful for guiding the refinement.

A plastic localization calculation based on Eq. (3.186) is shown in Fig. 3.27. This is
an early example taken from reference 138. Here, purely plastic flow is shown, ignor-
ing the elastic effects and the refinement is based on the second derivatives. Such a

flow formulation (rigid plastic flow) is frequently used in metal forming calculations,
to which we return in Volume 3.
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Fig. 3.27 Adaptive analysis of plastic flow deformation in a perforated plate: (a) initial mesh, 273 degrees of
freedom; (b) final adapted mesh; (c) displacement of an initially uniform grid embedded in the material.

In the next example we shall use adaptivity based on the first derivatives. Figure
3.28 illustrates a load on a rigid footing over a vertical cut. Here a T6/3C element
(triangular with quadratic displacement and linear pressure) is used. Both coarse
and adaptively refined meshes give nearly exact answers for the case of ideal
plasticity.

For strain softening with a plastic modulus H = —5000 answers appear to be mesh
dependent. Here, we show how answers become almost mesh independent if H is
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Fig. 3.28 Failure of a rigid footing on a vertical cut. Ideal von Mises plasticity and quadratic triangles with
linear variation for pressure (T6C/3C) elements are assumed. (a) Geometrical data; (b) coarse mesh; (c) final
adapted mesh; (d) displacements after failure; (e) displacement-load diagrams for adaptive mesh and ideal
plasticity (H = 0); (f) softening behaviour. Coarse mesh and adapted mesh results are with a constant H of
—5000 and a variable H starting from —5000 at coarse mesh size.
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Fig. 3.29 A p — 4 diagram of elasto-plastic slope aiming at 2.5% error in ultimate load (15% incremental
energy error) with use of quadratic triangular elements (T6/3B). Mesh A: u = 0.0 (coarse mesh). Mesh B:
u=0.025. Mesh C: u=0.15. Mesh D: u=0.3. Mesh E: u=0.45. Mesh F. u=0.6. Mesh G: u=0.75.
Mesh H: u = 0.9. The last mesh (Mesh H, named as the ‘optimal mesh’) is used for the solution of the problem
from the first load step, without further refinement.

varied with element size in the manner discussed in Sec. 3.11 [see Eq. (3.184)]. Figures
3.29 and 3.30 show, respectively, the behaviour of a rigid footing placed on an
embankment and on a flat foundation with eccentric loading. All cases illustrate
the excellent discontinuity capturing properties of the adaptive refinement.
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Fig. 3.30 Foundation (eccentric loading); ideal von Mises plasticity. (a) Geometry and boundary conditions;
(b) adaptive mesh; (c) deformed mesh using T6C/1D elements (H = 0, v = 0.49).
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3.13 Non-linear quasi-harmonic field problems

Non-linearity may arise in many problems beyond those of solid mechanics, but the
techniques described in this chapter are still universally applicable. Here we shall look
again at one class of problems which is governed by the quasi-harmonic field
equations of Chapter 1.

In some formulations it is assumed that

q=—k(¢)V¢ (3.188)

which gives, then (with use of definitions from Sec. 1.2.4),
P,=H(¢)d (3.189)

where now H has the familiar form
H= J (VN) k(¢) VN AQ (3.190)
Q

In this form the general non-linear problem may be solved by direct iteration
methods; however, as these often fail to converge it is frequently necessary to use a
scheme for which a tangential matrix to ¥ is required, as presented in Sec. 2.2.4
[see Eq. (2.26)]. The tangent for the form given by Eq. (3.188) is generally unsym-
metric; however, special forms can be devised which lead to symmetry.'*® In many
physical problems, however, the values of k£ in Eq. (3.188) depend on the absolute
value of the gradient of V¢, that is,

V=1/(Ve) Vo
o dak (3.191)
dv
In such cases, we can write
_OH(@)d
HT—T—H—&-A (3.192)
where
A= J (VN)' (V)"K' V] VN, dQ (3.193)
Q

and symmetry is preserved.

Situations of this kind arise in seepage flow where the permeability is dependent on
the absolute value of the flow velocity,mg‘150 in magnetic fields, =154 where magnetic
response is a function of the absolute field strength, in slightly compressible fluid flow,
and indeed in many other physical situations.'> Figure 3.31 from reference 151
illustrates a typical non-linear magnetic field solution.

101
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Fig. 3.31 Magnetic field in a six-pole magnet with non-linearity owing to saturation. '’

While many more interesting problems could be quoted we conclude with one in which
the only non-linearity is that due to the heat generation term Q [see Chapter 1, Eq. (1.54)].
This particular problem of spontaneous ignition, in which Q depends exponentially on
the temperature, serves to illustrate the point about the possibility of multiple solutions
and indeed the non-existence of any solution in certain non-linear cases.'>®

Taking k =1 and Q = dexp ¢, we examine an elliptic domain in Fig. 3.32. For
various values of §, a Newton—Raphson iteration is used to obtain a solution, and
we find that no convergence (and indeed no solution) exists when § > 8, exists;
above the critical value of § the temperature rises indefinitely and spontaneous ignition
of the material occurs. For values below this, two solutions are possible and the start-
ing point of the iteration determines which one is in fact obtained.

This last point illustrates that an insight into the problem is, in non-linear solutions,
even more important than elsewhere.



Non-linear quasi-harmonic field problems
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Fig. 3.32 Anon-linear heat-generation problemillustrating the possibility of multiple or no solutions depend-
ing on the heat generation parameter §; spontaneous combustion.mi (a) Solution mesh and variation of
temperature at point C; (b) two possible temperature distributions for § = 0.75.
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Plate bending approximation:
thin (Kirchhoff) plates and C,
continuity requirements

4.1 Introduction

The subject of bending of plates and indeed its extension to shells was one of the first
to which the finite element method was applied in the early 1960s. At that time the
various difficulties that were to be encountered were not fully appreciated and for
this reason the topic remains one in which research is active to the present day.
Although the subject is of direct interest only to applied mechanicians and structural
engineers there is much that has more general applicability, and many of the
procedures which we shall introduce can be directly translated to other fields of
application.

Plates and shells are but a particular form of a three-dimensional solid, the treat-
ment of which presents no theoretical difficulties, at least in the case of elasticity.
However, the thickness of such structures (denoted throughout this and later chapters
as f) is very small when compared with other dimensions, and complete three-
dimensional numerical treatment is not only costly but in addition often leads to
serious numerical ill-conditioning problems. To ease the solution, even long before
numerical approaches became possible, several classical assumptions regarding the
behaviour of such structures were introduced. Clearly, such assumptions result in a
series of approximations. Thus numerical treatment will, in general, concern itself
with the approximation to an already approximate theory (or mathematical
model), the validity of which is restricted. On occasion we shall point out the short-
comings of the original assumptions, and indeed modify these as necessary or
convenient. This can be done simply because now we are granted more freedom
than that which existed in the ‘pre-computer’ era.

The thin plate theory is based on the assumptions formalized by Kirchhoffin 1850,
and indeed his name is often associated with this theory, though an early version was
presented by Sophie Germain in 1811.>~* A relaxation of the assumptions was made
by Reissner in 1945 and in a slightly different manner by Mindlin® in 1951. These
modified theories extend the field of application of the theory to thick plates and
we shall associate this name with the Reissner—Mindlin postulates.

It turns out that the thick plate theory is simpler to implement in the finite element
method, though in the early days of analytical treatment it presented more difficulties.
As it is more convenient to introduce first the thick plate theory and by imposition of
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additional assumptions to limit it to thin plate theory we shall follow this path in the
present chapter. However, when discussing numerical solutions we shall reverse the
process and follow the historical procedure of dealing with the thin plate situations
first in this chapter. The extension to thick plates and to what turns out always to
be a mixed formulation will be the subject of Chapter 5.

In the thin plate theory it is possible to represent the state of deformation by one
quantity w, the lateral displacement of the middle plane of the plate. Clearly, such
a formulation is irreducible. The achievement of this irreducible form introduces
second derivatives of w in the strain definition and continuity conditions between
elements have now to be imposed not only on this quantity but also on its derivatives
(Cy continuity). This is to ensure that the plate remains continuous and does not
‘kink’." Thus at nodes on element interfaces it will always be necessary to use both
the value of w and its slopes (first derivatives of w) to impose continuity.

Determination of suitable shape functions is now much more complex than those
needed for C, continuity. Indeed, as complete slope continuity is required on the
interfaces between various elements, the mathematical and computational difficulties
often rise disproportionately fast. It is, however, relatively simple to obtain shape func-
tions which, while preserving continuity of w, may violate its slope continuity between
elements, though normally not at the node where such continuity is imposed.T If such
chosen functions satisfy the ‘patch test’ (see Chapter 10, Volume 1) then convergence
will still be found. The first part of this chapter will be concerned with such ‘non-
conforming’ or ‘incompatible’ shape functions. In later parts new functions will be
introduced by which continuity can be restored. The solution with such ‘conforming’
shape functions will now give bounds to the energy of the correct solution, but, on
many occasions, will yield inferior accuracy to that achieved with non-conforming
elements. Thus, for practical usage the methods of the first part of the chapter are
often recommended.

The shape functions for rectangular elements are the simplest to form for thin
plates and will be introduced first. Shape functions for triangular and quadrilateral
elements are more complex and will be introduced later for solutions of plates of
arbitrary shape or, for that matter, for dealing with shell problems where such
elements are essential.

The problem of thin plates is associated with fourth-order differential equations
leading to a potential energy function which contains second derivatives of the
unknown function. It is characteristic of a large class of physical problems and,
although the chapter concentrates on the structural problem, the reader will find
that the procedures developed also will be equally applicable to any problem which
is of fourth order.

The difficulty of imposing C; continuity on the shape functions has resulted in
many alternative approaches to the problems in which this difficulty is side-stepped.
Several possibilities exist. Two of the most important are:

1. independent interpolation of rotations 0 and displacement w, imposing continuity
as a special constraint, often applied at discrete points only;

*1If ‘kinking” occurs the second derivative or curvature becomes infinite and squares of infinite terms occur
in the energy expression.
T Later we show that even slope discontinuity at the node may be used.
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2. the introduction of lagrangian variables or indeed other variables to avoid the
necessity of C; continuity.

Both approaches fall into the class of mixed formulations and we shall discuss these
briefly at the end of the chapter. However, a fuller statement of mixed approaches will
be made in the next chapter where both thick and thin approximations will be dealt
with simultaneously.

4.2 The plate problem: thick and thin formulations
4.2.1 Governing equations

The mechanics of plate action is perhaps best illustrated in one dimension, as shown
in Fig. 4.1. Here we consider the problem of cylindrical bending of plates.” In this
problem the plate is assumed to have infinite extent in one direction (here assumed
the y direction) and to be loaded and supported by conditions independent of y. In
this case we may analyse a strip of unit width subjected to some stress resultants
M., P, and S, which denote x-direction bending moment, axial force and transverse

7 H\J“% lt % >M

A T S,
z
(@)
(b)
Assumed
A A — Corrected
S %
~ Txy N
Gy ’
(c) A A
12 t2 12
Py= | oxdz My=- | o,zdz S= | 1ydz
-2 -2 -2

Fig. 4.1 Displacements and stress resultants for a typical beam.
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shear force, respectively. For cross-sections that are originally normal to the middle
plane of the plate we can use the approximation that at some distance from points of
support or concentrated loads plane sections will remain plane during the deforma-
tion process. The postulate that sections normal to the middle plane remain plane
during deformation is thus the first and most important assumption of the theory
of plates (and indeed shells). To this is added the second assumption. This simply
observes that the direct stresses in the normal direction, z, are small, that is, of the
order of applied lateral load intensities, ¢, and hence direct strains in that direction
can be neglected. This ‘inconsistency’ in approximation is compensated for by assum-
ing plane stress conditions in each lamina.

With these two assumptions it is easy to see that the total state of deformation can
be described by displacements u, and w, of the middle surface (z = 0) and a rotation
.. of the normal. Thus the local displacements in the directions of the x and z axes are

taken as
u(x,z) = ug(x) — z6,(x) and w(x,z) = wy(x) 4.1
Immediately the strains in the x and z directions are available as
ou_ w00,
ToOx T ax  ax
e.=0 (4.2)
_u om0
=T, o T T T gy

For the cylindrical bending problem a state of linear elastic, plane stress for each
lamina yields the stress—strain relations

E

:1—1/

Ox Ex and Txz = G'sz

2

The stress resultants are obtained as

/2
P, :J o dz = 210

—t/2 ox
/2 ow
S, = J,/z .. dz = kGt (ax‘) - ex) (4.3)
/2
Mx:—J szdz:Daex
—1/2 Ox
where B is the in-plane plate stiffness and D the bending stiffness computed from
Et Er
B= d D=—+ 4.4
1—2 1201 — A (44)

with v Poisson’s ratio, £ and G direct and shear elastic moduli, respectively.”

* A constant x has been added here to account for the fact that the shear stresses are not constant across the
section. A value of k = 5/6 is exact for a rectangular, homogeneous section and corresponds to a parabolic
shear stress distribution.
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Three equations of equilibrium complete the basic formulation. These equilibrium
equations may be computed directly from a differential element of the plate or by
integration of the local equilibrium equations. Using the latter approach and assum-
ing zero body and inertial forces we have for the axial resultant

[/2 60' (97'
X Xz dz =0
J—I/Z[ax T aZ:| z
o t/2
Ox J—r/z 0y dz + 7| — Tzl p =0 (45)
or,
ox

where the shear stress on the top and bottom of the plate are assumed to be zero.
Similarly, the shear resultant follows from

2 [or., Oo
X Zldz=0
J;/z{ax * az] -
0 t/2
a J[/z Txz dz + CTz|t/270—z|ft/2 =0 (46)
oS, B
Ox +4:=0

where the transverse loading ¢. arises from the resultant of the normal traction on the
top and/or bottom surfaces. Finally, the moment equilibrium is deduced from

t/2
B J . [&fx N 8sz} dr =0

—t/2 8x aZ
o /2 /2
- z de—i—J -dz=0 4.7
0x J[/Z 7 —t/2 Tz (47)
oM _
O +S5,=0

In the elastic case of a plate it is easy to see that the in-plane displacements and forces,
uy and P, decouple from the other terms and the problem of lateral deformations can
be dealt with separately. We shall thus only consider bending in the present chapter,
returning to the combined problem, characteristic of shell behaviour, in later chapters.
Equations (4.1)—(4.7) are typical for thick plates, and the thin plate theory adds an
additional assumption. This simply neglects the shear deformation and puts G = oc.
Equation (4.3) thus becomes
6W0
o 0.,=0 (4.8)
This thin plate assumption is equivalent to stating that the normals to the middle
plane remain normal to it during deformation and is the same as the well-known
Bernoulli—-Euler assumption for thin beams. The thin, constrained theory is very
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Singularity
disregarded

I

(a) Built-in support (b) Free edge with M =0,
(clamped) with S=0(P=0)
u=v=w=0,
6=0

Singularity
disregarded Rigid

RS T

Conventional illustration Real approximation

I
o o

M,y = M,s=0 SS1 (soft support)
or
(n) 6,=065=0 SS2 (hard support)

(c) Simply supported condition

Fig. 4.2 Support (end) conditions for a plate or a beam. Note: the conventionally illustrated simple support
leads to infinite displacement - reality is different.

widely used in practice and proves adequate for a large number of structural
problems, though, of course, should not be taken literally as the true behaviour
near supports or where local load action is important and is three dimensional.

In Fig. 4.2 we illustrate some of the boundary conditions imposed on plates (and
beams) and immediately note that the diagrammatic representations of simple
support as a knife edge would lead to infinite displacements and stresses. Of
course, if a rigid bracket is added in the manner shown this will alter the behaviour
to that which we shall generally assume.

The one-dimensional problem of plates and the introduction of thick and thin
assumptions translate directly to the general theory of plates. In Fig. 4.3 we illustrate
the extensions necessary and write, in place of Eq. (4.1) (assuming u, and v, to be
Z€ro)

u=—z0,(x,y) v=—-z0,(x,y) w=w(x,y) (4.9)

where we note that displacement parameters are now functions of x and y.
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Fig. 4.3 Definitions of variables for plate approximations: (a) displacements and rotation; (b) stress resultants.

The strains may now be separated into bending (in-plane components) and trans-
verse shear groups and we have, in place of Eq. (4.2),

9
e, ox
. 0 0,
e=q¢ p=—2z|0 ol =—zL60 (4.10)
v
'Yx) a a
dy Ox
and
ow

Vxz ox ex
= = - = -0 4.11
! { Vyz } ow { 0, } Vi (411)
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We note that now in addition to normal bending moments M, and M, now
defined by expression (4.3) for the x and y directions, respectively, a twisting
moment arises defined by

/2
M, =— J Ty dz (4.12)
—t/2

Introducing appropriate constitutive relations, all moment components can be
related to displacement derivatives. For isotropic elasticity we can thus write, in
place of Eq. (4.3),
M,
M=< M, » =DL0 (4.13)
M,,

where, assuming plane stress behaviour in each layer,

1 v 0
D=D|v 1 0 (4.14)
0 0 (Il-v)/2

where v is Poisson’s ratio and D is defined by the second of Eqs (4.4). Further, the
shear force resultants are

S,

)
S = =a(Vw—0) (4.15)

For isotropic elasticity (though here we deliberately have not related G to £ and v to
allow for possibly different shear rigidities)

a=rGil (4.16)

where I is a 2 x 2 identity matrix.

Of course, the constitutive relations can be simply generalized to anisotropic or
inhomogeneous behaviour such as can be manifested if several layers of materials
are assembled to form a composite. The only apparent difference is the structure of
the D and o matrices, which can always be found by simple integration.

The governing equations of thick and thin plate behaviour are completed by writ-
ing the equilibrium relations. Again omitting the ‘in-plane’ behaviour we have, in
place of Eq. (4.6),

L?ax, ;y]{i’:}Jrqszsw:o (4.17)
and, in place of Eq. (4.7),
8% 0 (,fy M, S
x| _ T
R ]‘1\4/11 +{S},}:L M+S=0 (4.18)

dy Ox
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Equations (4.13)—(4.18) are the basis from which the solution of both thick and
thin plates can start. For thick plates any (or all) of the independent variables can
be approximated independently, leading to a mixed formulation which we shall
discuss in Chapter 5 and also briefly in Sec. 4.16 of this chapter.

For thin plates in which the shear deformations are suppressed Eq. (4.15) is
rewritten as

Vw—0=0 (4.19)
and the strain-displacement relations (4.10) become

o*w
ax?
9*w
a9
O*w
Ox 0y

where k is the matrix of changes in curvature of the plate. Using the above form for
the thin plate, both irreducible and mixed forms can now be written. In particular, it is
an easy matter to eliminate M, S and 0 and leave only w as the variable.

Applying the operator V! to expression (4.17), inserting Eqs (4.13) and (4.17) and
finally replacing 0 by the use of Eq. (4.19) gives a scalar equation

e=—zLVw=—z = —zK (4.20)

(LV)'DLVw—¢=0 (4.21)
where, using Eq. (4.20),
2 2 2 77T
(LV) = [a’ i’ 8}
ox?’ 0y? 0x0y

In the case of isotropy with constant bending stiffness D this becomes the well-
known biharmonic equation of plate flexure

o*w O*w A*w
D 2~ " 47 = 422
<8x4 + 0x*0y? + 8y4> ¢=0 (422)

4.2.2 The boundary conditions

The boundary conditions which have to be imposed on the problem (see Figs 4.2 and
4.4) include the following classical conditions.

1. Fixed boundary, where displacements on restrained parts of the boundary are given
specified values.” These conditions are expressed as

w=w; 6,=60, and 6, =0,

* Note that in thin plates the specification of w along s automatically specifies ; by Eq. (4.19), but this is not
the case in thick plates where the quantities are independently prescribed.
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Boundary tractions
My, Mps, S, P (b)
and corresponding

displacements
0,, 05, W

Fig. 4.4 Boundary traction and conjugate displacement. Note: the simply supported condition requiring
M, =0, 6, = 0 and w = 0 is identical at a corner node to specifying 6, = 6; = 0, that is, a clamped support.
This leads to a paradox if a curved boundary (a) is modelled as a polygon (b).

Here n and s are directions normal and tangential to the boundary curve of the
middle surface. A clamped edge is a special case with zero values assigned.

2. Traction boundary, where stress resultants M,, M,, and S, (conjugate to the
displacements 6,, 6, and w) are given prescribed values. A free edge is a special
case with zero values assigned.

3. ‘Mixed’ boundary conditions, where both traction and displacements can be
specified. Typical here is the simply supported edge (see Fig. 4.2). For this, clearly,
M, =0 and w=0, but it is less clear whether M, or 6, needs to be given.
Specification of M, = 0 is physically a more acceptable condition and does not
lead to difficulties. This should always be adopted for thick plates.

In thin plates 6, is automatically specified from w and we shall find certain difficulties,
and indeed anomalies, associated with this assumption.”® For instance, in Fig. 4.4 we
see how a specification of 6, = 0 at corner nodes implicit in thin plates formally leads
to the prescription of all boundary parameters, which is identical to boundary condi-
tions of a clamped plate for this point.

4.2.3 The irreducible, thin plate approximation

The thin plate approximation when cast in terms of a single variable w is clearly
irreducible and is in fact typical of a displacement formulation. The equations
(4.17) and (4.18) can be written together as

(LV)'M -—¢=0 (4.23)
and the constitutive relation (4.13) can be recast by using Eq. (4.19) as
M =DLVw (4.24)
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The derivation of the finite element equations can be obtained either from a weak form
of Eq. (4.23) obtained by weighting with an arbitrary function (say v = NV) and integra-
tion by parts (done twice) or, more directly, by application of the virtual work equiva-
lence. Using the latter approach we may write the internal virtual work for the plate as

Sl = J (62)"DedQ = J Sw(LV) "D (LV)w dQ (4.25)
Q 0
where 2 denotes the area of the plate reference (middle) surface and D is the plate
stiffness, which for isotropy is given by Eq. (4.14).

Similarly the external work is given by’

ST, = J SwqdQ + J 80, M, dT" + J
Q T,

L

60, M, dT" + J éwS,dl’ (4.26)
T,

where M, M,,, S, are specified values and I',, T, and T, are parts of the boundary
where each component is specified. For thin plates with straight edges Eq. (4.19)
gives immediately 8, = Ow/0s and thus the last two terms above may be combined as

J 80, M,,, dT" + J
r, r,

o R aMﬂX
swS, dl = Ls Sw (s,z — ) dr + Z 6w; R; (4.27)

where R; are concentrated forces arising at locations where corners exist (see Fig 4.2).2
Substituting into Eqs (4.25) and (4.26) the discretization

w=Na (4.28)

where a are appropriate parameters, we can obtain for a linear case standard dis-
placement approximation equations

Ka=f (4.29)
with
Ka = <J B'DB dQ) a= J B'™M dQ (4.30)
Q Q
and
f:J NgdQ +f, (4.31)
Q
where fy is the boundary contribution to be discussed later and
M =DBa (4.32)
with
B = (LV)N (4.33)

It is of interest, and indeed important to note, that when tractions are prescribed to
non-zero values the force term fy, includes all prescribed values of M,, M, and S,
irrespective of whether the thick or thin formulation is used. The reader can verify
that this term is

f, = J (N, M, + N M, +N'S,)dl (4.34a)
r
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where M,, M, and S, are prescribed values and for thin plates [though, of course,
relation (4.34a) is valid for thick plates also]:
ON ON

n and N‘V:E (4.34b)

The reader will recognize in the above the well-known ingredients of a displacement
formulation (see Chapter 2 of Volume 1, and Chapter 1 of this volume) and the
procedures are almost automatic once N is chosen.

Nn =

4.2.4 Continuity requirement for shape functions (C; continuity)

In Sections 4.3—4.13 we will be concerned with the above formulation [starting from
Eqgs (4.24) and (4.26)], and the presence of the second derivatives indicates quite
clearly that we shall need C; continuity of the shape functions for the irreducible,
thin plate, formulation. This continuity is difficult to achieve and reasons for this
are given below.

To ensure the continuity of both w and its normal slope across an interface we must
have both w and dw/0n uniquely defined by values of nodal parameters along such an
interface. Consider Fig. 4.5 depicting the side 1-2 of a rectangular element. The
normal direction 7 is in fact that of y and we desire w and dw/0dy to be uniquely deter-
mined by values of w, dw/0x, Ow/dy at the nodes lying along this line.

Following the principles expounded in Chapter 8 of Volume 1, we would write
along side 1-2,

w=A|+ Ayx+ A3y +--- (4.35)
and
ow

with a number of constants in each expression just sufficient to determine a unique
solution for the nodal parameters associated with the line.

Thus, for instance, if only two nodes are present a cubic variation of w should be
permissible noting that Ow/0x and w are specified at each node. Similarly, only a
linear, or two-term, variation of Ow/dy would be permissible.

Fig. 4.5 Continuity requirement for normal slopes.
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Note, however, that a similar exercise could be performed along the side placed in
the y direction preserving continuity of dw/0x along this. Along side 1-2 we thus
have Ow/dy, depending on nodal parameters of line 1-2 only, and along side 1-3
we have Ow/0x, depending on nodal parameters of line 1-3 only. Differentiating
the first with respect to x, on line 1-2 we have 82w/8x6y, depending on nodal
parameters of line 1-2 only, and similarly, on line 1-3 we have, 8w /0ydx, depending
on nodal parameters of line 1-3 only.

At the common point, 1, an inconsistency arises immediately as we cannot auto-
matically have there the necessary identity for continuous functions

*w _ *w
Ox0y ~— Oydx

(4.37)

for arbitrary values of the parameters at nodes 2 and 3. It is thus impossible to specify
simple polynomial expressions for shape functions ensuring full compatibility when only
w and its slopes are prescribed at corner nodes.

Thus if any functions satisfying the compatibility are found with the three nodal
variables, they must be such that at corner nodes these functions are not continuously
differentiable and the cross-derivative is not unique. Some such functions are
discussed in the second part of this chapter.!*~1¢

The above proof has been given for a rectangular element. Clearly, the arguments
can be extended for any two arbitrary directions of interface at the corner node 1.

A way out of this difficulty appears to be obvious. We could specify the cross-
derivative as one of the nodal parameters. This, for an assembly of rectangular
elements, is convenient and indeed permissible. Simple functions of that type have
been suggested by Bogner et al.!” and used with some success. Unfortunately, the
extension to nodes at which a number of element interfaces meet with different
angles (Fig. 4.6) is not, in general, permissible. Here, the continuity of cross-
derivatives in several sets of orthogonal directions implies, in fact, a specification of
all second derivatives at a node.

This, however, violates physical requirements if the plate stiffness varies abruptly
from element to element, for then equality of moments normal to the interfaces
cannot be maintained. However, this process has been used with some success in
homogeneous plate situations'®* > although Smith and Duncan'® comment adversely
on the effect of imposing such excessive continuities on several orders of higher
derivatives.

Fig. 4.6 Nodes where elements meet in arbitrary directions.
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The difficulties of finding compatible displacement functions have led to many
attempts at ignoring the complete slope continuity while still continuing with the
other necessary criteria. Proceeding perhaps from a naive but intuitive idea that
the imposition of slope continuity at nodes only must, in the limit, lead to a
complete slope continuity, several successful, ‘non-conforming’, elements have been
developed.!1:26-40

The convergence of such elements is not obvious but can be proved either by
application of the patch test or by comparison with finite difference algorithms. We
have discussed the importance of the patch test extensively in Chapter 11 of
Volume 1 and additional details are available in references 41-43.

In plate problems the importance of the patch test in both design and testing of
elements is paramount and this test should never be omitted. In the first part of
this chapter, dealing with non-conforming elements, we shall repeatedly make use
of it. Indeed, we shall show how some of the most successful elements currently
used have developed via this analytical interplretation.‘m*49

Non-conforming shape functions

4.3 Rectangular element with corner nodes (12 degrees
of freedom)

4.3.1 Shape functions

Consider a rectangular element of a plate ijk/ coinciding with the xy plane as shown in
Fig. 4.7. At each node, n, displacements a,, are introduced. These have three compo-
nents: the first a displacement in the z direction, w,, the second a rotation about the x
axis, (éx),, and the third a rotation about the y axis (0},),,.*

The nodal displacement vectors are defined below as a;. The element displacement

will, as usual, be given by a listing of the nodal displacements, now totalling twelve:

a;
w,’,
e a; ;'
=SV A=, (4.38)
k A
6,
a; !

A polynomial expression is conveniently used to define the shape functions in terms
of the 12 parameters. Certain terms must be omitted from a complete fourth-order

* Note that we have changed here the convention from that of Fig. 4.3 in this chapter. This allows transfor-
mations needed for shells to be carried out in an easier manner. However, when manipulating the equations
of Chapter 5 we shall return to the orginal definitions of Fig. 4.3. Similar difficulties are discussed by
Hughes,50 and a simple transformation is as follows:

. 0 1
0=TO0 where T= { }
-1 0
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Fig. 4.7 A rectangular plate element.

polynomial. Writing
W= + X+ a3y + a4x2 + asxy + 046)/2 + cv7x3 + ozgxzy
+ agxy2 + a10y3 + a11x3y + alzxy3
=Pa (4.39)

has certain advantages. In particular, along any x constant or y constant line, the
displacement w will vary as a cubic. The element boundaries or interfaces are
composed of such lines. As a cubic is uniquely defined by four constants, the two
end values of slopes and the two displacements at the ends will therefore define the
displacements along the boundaries uniquely. As such end values are common to
adjacent elements continuity of w will be imposed along any interface.

It will be observed that the gradient of w normal to any of the boundaries also
varies along it in a cubic way. (Consider, for instance, values of the normal dw/dy
along a line on which x is constant.) As on such lines only two values of the
normal slope are defined, the cubic is not specified uniquely and, in general, a discon-
tinuity of normal slope will occur. The function is thus ‘non-conforming’.

The constants a; to «aj, can be evaluated by writing down the 12 simultaneous
equations linking the values of w and its slopes at the nodes when the coordinates
take their appropriate values. For instance,

Wi = Qg + X + a3y + -

ow
y )i

ow A
— axA:eV’-:_az_OZSyi_”'
1

Listing all 12 equations, we can write, in matrix form,

a°=Ca (4.40)

Oy = o+ asx; + -
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126 Plate bending approximation

where Cis a 12 x 12 matrix depending on nodal coordinates, and a is a vector of the
12 unknown constants. Inverting we have

o=C"'a (4.41)

This inversion can be carried out by the computer or, if an explicit expression for the
stiffness, etc., is desired, it can be performed algebraically. This was in fact done by
Zienkiewicz and Cheung.?®

It is now possible to write the expression for the displacement within the element in
a standard form as

u=w=Na"=PC'a° (4.42)
where
P=(1,x,p,x% x5, 5, Xy, x1°, », Xy, x°)
The form of the B is obtained directly from Eqs (4.28) and (4.33). We thus have

+20[4 +6OL7X +20{8y —+ 60[1 l.Xy
LVw= +20{6 +20¢9X +60é]()y + 60412)(}/’
+205  +dagx  +dagy + 60y X% 4 60y0)°

We can write the above as

LVw=Qa=QC 'a®*=Ba° andthus B=QC™' (4.43)
in which
000 200 6x 2y 0 0 6x¢p O
Q=(0 00 0 0 2 0 0 2x 6y 0 6xy (4.44)

000020 0 4c 4 0 6x° 6)°

It is of interest to remark now that the displacement function chosen does in fact
permit a state of constant strain (curvature) to exist and therefore satisfies one of
the criteria of convergence stated in Volume 1.*

An explicit form of the shape function N was derived by Melosh™ and can be
written simply in terms of normalized coordinates. Thus, we can write for any node

2464 my— & —1
NI =31 +&)(1+m) b(1—n') (4.45)
—a&(1- &)

with normalized coordinates defined as:

§=""" where & =¢§

n= b‘ where 1y = )

“If a; to ay, are zero, then the ‘strain’ defined by second derivatives is constant. By Eq. (4.40), the corre-
sponding a° can be found. As there is a unique correspondence between a° and @ such a state is therefore
unique. All this presumes that C~! does in fact exist. The algebraic inversion shows that the matrix C is
never singular.
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This form avoids the explicit inversion of C; however, for simplicity we pursue the
direct use of polynomials to deduce the stiffness and load matrices.

4.3.2 Stiffness and load matrices

Standard procedures can now be followed, and it is almost superfluous to recount the
details. The stiffness matrix relating the nodal forces (given by lateral force and two
moments at each node) to the corresponding nodal displacement is

K® = J B'DBdxdy (4.46)
Qe
or, substituting Eq. (4.43) into this expression,

K=CT" <Jb J Q'DQdx dy> c! (4.47)
—b J—a

The terms not containing x and y have now been moved from the operation of
integrating. The term within the integration sign can be multiplied out and integrated
explicitly without difficulty if D is constant.

The external forces at nodes arising from distributed loading can be assigned ‘by
inspection’, allocating specific areas as contributing to any node. However, it is
more logical and accurate to use once again the standard expression (4.31) for such
an allocation.

The contribution of these forces to each of the nodes is

fw,- b ra
f,=2% Jo. p = [ J NTgdxdy (4.48)
. J—b J—a
Jo,,
or, by Eq. (4.42),
b a
fi=-C7 J J PTgdxdy (4.49)
—b J—a

The integral is again evaluated simply. It will now be noted that, in general, all three
components of external force at any node will have non-zero values. This is a result
that the simple allocation of external loads would have missed. The nodal load vector
for uniform loading ¢ is given by

3 3 3 3
fi=1qabs b3, fh=15qab —b b, f5 =24 qgab b 3, £y =L qabq —b 3 (4.50)
—a —a a a

The vector of nodal plate forces due to initial strains and initial stresses can be found
in a similar way. It is necessary to remark in this connection that initial strains, such as
may be due to a temperature rise, is seldom confined in its effects on curvatures.
Usually, direct (in-plane) strains in the plate are introduced additionally, and the
complete problem can be solved only by consideration of the plane stress problem
as well as that of bending.
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128 Plate bending approximation

4.4 Quadrilateral and parallelogram elements

The rectangular element developed in the preceding section passes the patch test* and
is always convergent. However, it cannot be easily generalized into a quadrilateral
shape. Transformation of coordinates of the type described in Chapter 9 of
Volume 1 can be performed but unfortunately now it will be found that the constant
curvature criterion is violated. As expected, such elements behave badly but by
arguments given in Chapter 9 of Volume 1 convergence may still occur providing
the patch test is passed in the curvilinear coordinates. Henshell et al.** studied the
performance of such an element (and also some of a higher order) and concluded
that reasonable accuracy is attainable. Their paper gives all the details of transforma-
tions required for an isoparametric mapping and the resulting need for numerical
integration.

Only for the case of a parallelogram is it possible to achieve states of constant
curvature exclusively using functions of £ and 7 and the patch test is satisfied. For
a parallelogram the local coordinates can be related to the global ones by the explicit
expression (Fig. 4.8)

__X—ycota
a
4.51
_ycsca ( )

b

and all expressions for the stiffness and loads can therefore also be derived directly.
Such an element is suggested in the discussion in reference 26, and the stiffness
matrices have been worked out by Dawe.”® A somewhat different set of shape
functions was suggested by Argyris.”’

3

Fig. 4.8 Parallelogram element and skew coordinates.

4.5 Triangular element with corner nodes (9 degrees of
freedom)

At first sight, it would seem that once again a simple polynomial expansion could be
used in a manner identical to that of the previous section. As only nine independent
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Fig. 4.9 Area coordinates.

movements are imposed, only nine terms of the expansion are permissible. Here an
immediate difficulty arises as the full cubic expansion contains 10 terms [Eq. (4.39)
with «y; = a, = 0] and any omission has to be made arbitrarily. To retain a certain
symmetry of appearance all 10 terms could be retained and two coefficients made
equal (for example ag = ) to limit the number of unknowns to nine. Several such
possibilities have been investigated but a further, much more serious, problem
arises. The matrix corresponding to C of Eq. (4.40) becomes singular for certain
orientations of the triangle sides. This happens, for instance, when two sides of the
triangle are parallel to the x and y axes respectively.

An ‘obvious’ alternative is to add a central node to the formulation and eliminate
this by static condensation. This would allow a complete cubic to be used, but again it
was found that an element derived on this basis does not converge to correct answers.

Difficulties of asymmetry can be avoided by the use of area coordinates described in
Sec. 8.8 of Volume 1. These are indeed nearly always a natural choice for triangles, see
(Fig. 4.9).

4.5.1 Shape functions

As before we shall use polynomial expansion terms, and it is worth remarking that
these are given in area coordinates in an unusual form. For instance,
ar Ly + oy Ly + az Ly (4.52)
gives the three terms of a complete linear polynomial and
o L+ ar L3+ o3 L3 +asLiLy + asLyLsy + ag Ly L, (4.53)

gives all six terms of a quadratic (containing within it the linear terms).” The 10 terms
of a cubic expression are similarly formed by the products of all possible cubic

*However, it is also possible to write a complete quadratic as
a Ly +arls + a3l + oyl Ly + asly Ly + agls Ly

and so on, for higher orders. This has the advantage of explicitly stating all retained terms of polynomials of
lower order.
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Fig. 4.10 Some basic functions in area coordinate polynomials.

combinations, that is,
LY, L3, L3, LiLy, LiLy, L3Ls, L5Ly, L3Ly, L3Ly, Ly LyLs (4.54)

For a 9 degree-of-freedom element any of the above terms can be used in a suitable
combination, remembering, however, that only nine independent functions are
needed and that constant curvature states have to be obtained. Figure 4.10 shows
some functions that are of importance. The first [Fig. 4.10(a)] gives one of three
functions representing a simple, unstrained rotation of the plate. Obviously, these
must be available to produce the rigid body modes. Further, functions of the type
L3 L,, of which there are six in the cubic expression, will be found to take up a
form similar (though not identical) to Fig. 4.10(b).

The cubic function L; L, L5 is shown in Fig 4.10(c), illustrating that this is a purely
internal (bubble) mode with zero values and slopes at all three corner nodes (though
slopes are not zero along edges). This function could thus be useful for a nodeless or
internal variable but will not, in isolation, be used as it cannot be prescribed in terms
of corner variables. It can, however, be added to any other basic shape in any propor-
tion, as indicated in Fig. 4.10(b).
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The functions of the second kind are of special interest. They have zero values of w
at all corners and indeed always have zero slope in the direction of one side. A linear
combination of two of these (for example L3 L, and L3 L) are capable of providing
any desired slopes in the x and y directions at one node while maintaining all other
nodal slopes at zero.

For an element envisaged with 9 degrees of freedom we must ensure that all six
quadratic terms are present. In addition we select three of the cubic terms. The quad-
ratic terms ensure that a constant curvature, necessary for patch test satisfaction, is
possible. Thus, the polynomials we consider are

P =Ly, Ly, Ly, LiLy, LyLs, LyLy, LiLy, L3 L3, L3L)]
and we write the interpolation as

w=Pa (4.55)

where a are parameters to be expressed in terms of nodal values. The nine nodal
values are denoted as

); i=1,2,3

i

R . oW
(Wi, Oy, eyi):<wi7 %

Upon noting that

o0
i’ Ox

9 9
) [oL 9L oL | L oL,
ox | _|ox ox ox|) 0| _ 1 [b by D3]] O (4.56)
g % % % aLz 2A Cq C C3 aLZ ’
o) Lo o all e o
8[43 8L3
where
2A:b1C2—b2C1
bi:yj_yk

Ci = X —xj'

with i, j, k a cyclic permutation of indices (see Chapter 9 of Volume 1), we now deter-
mine the shape function by a suitable inversion [see Sec. 4.3.1, Eq. (4.42)], and write
for node i
307 —2L}
NI = Q Li(bjLi — by L) + % (b — b) Ly Ly Ly
Li(¢j Ly — ep L) +% (¢ — ) Ly Ly Ly

(4.57)

Here the term L;L,L; is added to permit constant curvature states.

The computation of stiffness and load matrices can again follow the standard
patterns, and integration of expressions (4.30) and (4.31) can be done exactly using
the general integrals given in Fig. 4.9. However, numerical quadrature is generally
used and proves equally efficient (see Chapter 9 of Volume 1). The stiffness matrix
requires computation of second derivatives of shape functions and these may be
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conveniently obtained from

[ 9N, O*N, O*N; ]
&N, N, oL} 9L 0L, OL,0Ls e
ox2  Ox0y l{bl b, bﬂ N, N, N, bl Cl
PN, N, | 42 |e¢; ¢ o) |0L 0L, 9L  OL,0L, h2 :
dyox 0y PN, PN N | P9
LOL;0L, OL;0L, 0L} |
(4.58)

in which N; denotes any of the shape functions given in Eq. (4.57).

The element just derived is one first developed in reference 11. Although it satisfies
the constant strain criterion (being able to produce constant curvature states) it
unfortunately does not pass the patch test for arbitrary mesh configurations.
Indeed, this was pointed out in the original reference (which also was the one in
which the patch test was mentioned for the first time). However, the patch test is
fully satisfied with this element for meshes of triangles created by three sets of equally
spaced straight lines. In general, the performance of the element, despite this short-
coming, made the element quite popular in practical applications.*®

It is possible to amend the element shape functions so that the resulting element
passes the patch test in all configurations. An early approach was presented by
Kikuchi and Ando® by replacing boundary integral terms in the virtual work
statement of Eq. (4.26) by

ow  ow
Sy = JQ SwqdQ + Z § UF (811 - 8]1) M, (w) dl“]

oow

+ J [6an +— Mm} dr + J
r, Os r,

‘%:’ M, dT (4.59)

in which, T, is the boundary of each element e, M,(w) is the normal moment
computed from second derivatives of the w interpolation, and s is the tangent direc-
tion along the element boundaries. The interpolations given by Eq. (4.57) are C, con-
forming and have slopes which match those of adjacent elements at nodes. To correct
the slope incompatibility between nodes, a simple interpolation is introduced along
each element boundary segment as
ow ] , [8w
n| +s
j

ow n[Ow

—=(1-y5 ){ —
on Ox dy|; Ox
where 5’ is 0 at node j and 1 at node k, and m; and n; are direction cosines with respect
to the x and y axes, respectively. The above modification requires boundary integrals
in addition to the usual area integrals; however, the final result is one which passes the
patch test.

Bergen***” and Samuelsson*® also show a way of producing elements which pass
the patch test, but a successful modification useful for general application with elastic
and inelastic material behaviour is one derived by Specht.*” This modification uses
three fourth-order terms in place of the three cubic terms of the equation preceding

n ow
m . PR
k ' ay

m; +
j

k n,] (4.60)
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Eq. (4.55). The particular form of these is so designed that the patch test criterion
which we shall discuss in detail later in Sec. 4.7 is identically satisfied. We consider
now the nine polynomial functions given by

P =Ly, Ly, L3, L| Ly, Ly L3, L3L,,
LiLy + 3 LyLyLy{3(1 — p3) Ly — (1 + 3p3) Ly + (14 3p3) Ls},
L5Ly + 3 LiLyLay{3(1 — py)Ly — (14 3p) Ly + (1 +3p) Ly },
L3Ly + 5 Ly Ly Laf{3(1 — o) Ly — (14 3p0) Ly + (1 + 3p2) Lo }] (4.61)

where
-
py =2 (4.62)
and /; is the length of the triangle side opposite node i.*
The modified interpolation for w is taken as
w=Pa (4.63)

and, on identification of nodal values and inversion, the shape functions can be
written explicitly in terms of the components of the vector P defined by Eq. (4.61) as

Pi— Pii3+ Prys+2(Pipg— Prye)
NiTz —bj(Pri6— Prys) —biPiss (4.64)
—¢j(Prys — Pry3) — ik Piss

where i, j, k are the cyclic permutations of 1, 2, 3.

Once again, stiffness and load matrices can be determined either explicitly or using
numerical quadrature. The element derived above passes all the patch tests and
performs excellently.*! Indeed, if the quadrature is carried out in a ‘reduced’
manner using three quadrature points (see Volume 1, Table 9.2 of Sec. 9.11) then
the element is one of the best triangles with 9 degrees of freedom that is currently
available, as we shall show in the section dealing with numerical comparisons.

4.6 Triangular element of the simplest form (6 degrees of
freedom)

If conformity at nodes (C; continuity) is to be abandoned, it is possible to introduce
even simpler elements than those already described by reducing the element inter-
connections. A very simple element of this type was first proposed by Morley.* In
this element, illustrated in Fig. 4.11, the interconnections require continuity of the
displacement w at the triangle vertices and of normal slopes at the element mid-sides.

*The constants y; are geometric parameters occurring in the expression for normal derivatives. Thus on
side /; the normal derivative is given by

o_hfo, 0 Lo . (0 9
o_hyo o 0 (9 9
on~ aA oL, oL, oL, "\arL, oL
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w
ow
on
6 5
4
2 ¢ 3

Fig. 4.11 The simplest non-conforming triangle, from Morley,*® with 6 degrees of freedom.

With 6 degrees of freedom the expansion can be limited to quadratic terms alone,
which one can write as

w=[Ly, Ly, L3, LiLy, LyLs3, L3L]a (4.65)

Identification of nodal variables and inversion leads to the following shape functions:
for corner nodes

bibk — CiCk blbl — Cicj
N=L—-L(1-L)—————L(1—L)————>L,(1—-L 4.66
i i z( 1) b/2 +C/2 ]( j) b]%v+612¢ k( 3) ( )
and for ‘normal gradient’ nodes
2A
Ni+3 = - Li) (4-67)

22
Vb +c?
where the symbols are identical to those used in Eq. (4.56) and i,j,k are a cyclic
permutation of 1,2, 3.

Establishment of stiffness and load matrices follows the standard pattern and we
find that once again the element passes fully all the patch tests required. This
simple element performs reasonably, as we shall show later, though its accuracy is,
of course, less than that of the preceding ones.

It is of interest to remark that the moment field described by the element satisfies
exactly interelement equilibrium conditions on the normal moment M,, as the
reader can verify. Indeed, originally this element was derived as an equilibrating
one using the complementary energy principle,’> and for this reason it always gives
an upper bound on the strain energy of flexure. This is the simplest possible element
as it simply represents the minimum requirements of a constant moment field. An
explicit form of stiffness routines for this element is given by Wood.’!

4.7 The patch test — an analytical requirement

The patch test in its different forms (discussed fully in Chapters 10 and 11 of Volume 1)
is generally applied numerically to test the final form of an element. However, the basic
requirements for its satisfaction by shape functions that violate compatibility can be
forecast accurately if certain conditions are satisfied in the choice of such functions.
These conditions follow from the requirement that for constant strain states the virtual
work done by internal forces acting at the discontinuity must be zero. Thus if the
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tractions acting on an element interface of a plate are (see Fig. 4.4)

M, M, and S, (4.68)
and if the corresponding mismatch of virtual displacements are
ow ow
A@n = A (8}/1)’ A@Y = A(8S> and AW’ (469)

then ideally we would like the integral given below to be zero, as indicated, at least for
the constant stress states:

J M, A0, dl" + J M, A0, dT" + J S, Awdl’ =0 (4.70)
The last term will always be zero identically for constant M, M, M, fields as then
S, = §, = 0 [in the absence of applied couples, see Eq. (4.18)] and we can ensure the
satisfaction of the remaining conditions if

J A6, dT' =0 and J AO,dT =0 (4.71)
T, T

is satisfied for each straight side I, of the element.

For elements joining at vertices where dw/0n is prescribed, these integrals will be
identically zero only if anti-symmetric cubic terms arise in the departure from
linearity and a quadratic variation of normal gradients is absent, as shown in
Fig. 4.12(a). This is the motivation for the rather special form of shape function
basis chosen to describe the incompatible triangle in Eq. (4.61), and here the first
condition of Eq. (4.71) is automatically satisfied. The satisfaction of the second
condition of Eq. (4.71) is always ensured if the function w and its first derivatives
are prescribed at the corner nodes.

For the purely quadratic triangle of Sec. 4.6 the situation is even simpler. Here the
gradients can only be linear, and if their value is prescribed at the element mid-side as
shown in Fig. 4.11(b) the integral is identically zero.

The same arguments apparently fail when the rectangular element with the func-
tion basis given in Eq. (4.42) is examined. However, the reader can verify by direct

Compatible

T |

Not permissible

<

' Quadratic !

I/-\\_/I ‘ Linear
Cubic
(a) (b)

Fig. 4.12 Continuity condition for satisfaction of patch test [[(dw/dn) ds = 0]; variation of dw/dn along
side. (a) Definition by corner nodes (linear component compatible); (b) definition by one central node
(constant component compatible).
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4

16 x 16 mesh finite difference solution (Southwell, 1946)4®
------- 0 6 x 6 division into finite elements
—--—4 4 x 4 division into finite elements
—-—0 2 x 2 divisions into finite elements

Fig. 4.13 A square plate with clamped edges; uniform load g; square elements.

Table 4.1 Computed central deflection of a square plate for several meshes (rectangular elements)®

Mesh Total Simply supported plate Clamped plate
number -
of nodes o il o 8
2x2 9 0.003446 0.013784 0.001480 0.005919
4 x4 25 0.003939 0.012327 0.001403 0.006134
8x8 81 0.004033 0.011829 0.001304 0.005803
16 x 16 169 0.004050 0.011715 0.001283 0.005710
Series (Timoshenko) 0.004062 0.01160 0.00126 0.00560

* Winax = aqL4/D for uniformly distributed load ¢. t Wnax = ﬁPLZ/D for central concentrated load P. Note: Subdivision of
whole plate given for mesh.

Table 4.2 Corner supported square plate

Method Mesh Point 1 Point 2
w M, w M,
Finite element 2x2 0.0126 0.139 0.0176 0.095
4 x4 0.0165 0.149 0.0232 0.108
6x6 0.0173 0.150 0.0244 0.109
Marcus> 0.0180 0.154 0.0281 0.110
Ballesteros and Lee™ 0.0170 0.140 0.0265 0.109
Multiplier qL*/D qL? qL*/D gL?

Note: point 1, centre of side; point 2, centre of plate.
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algebra that the integrals of Eqs (4.71) are identically satisfied. Thus, for instance,

[ Ow dx = when y==+b

and Ow/dy is taken as zero at the two nodes (i.e. departure from prescribed linear
variations only is considered).
The remarks of this section are verified in numerical tests and lead to an intelligent,

a priori, determination of conditions which make shape functions convergent for
incompatible elements.

4.8 Numerical examples

The various plate bending elements already derived — and those to be derived in
subsequent sections — have been used to solve some classical plate bending problems.

We first give two specific illustrations and then follow these with a general conver-
gence study of elements discussed.

3ft 3ft

41t
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A
?:2“—.20\"r
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3 3t
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Fig. 4.15 Castleton railway bridge: general geometry and details of finite element subdivision. (a) Typical
actual section; (b) idealization and meshing.



Numerical examples

Figure 4.13 shows the deflections and moments in a square plate clamped along its
edges and solved by the use of the rectangular element derived in Sec. 4.3 and a
uniform mesh.?® Table 4.1 gives numerical results for a set of similar examples solved
with the same element,*’ and Table 4.2 presents another square plate with more complex
boundary conditions. Exact results are available here and comparisons are made.>-*

Figures 4.14 and 4.15 show practical engineering applications to more complex
shapes of slab bridges. In both examples the requirements of geometry necessitate
the use of a triangular element — with that of reference 11 being used here. Further,
in both examples, beams reinforce the slab edges and these are simply incorporated in
the analysis on the assumption of concentric behaviour.

Finally in Fig. 4.16(a)—(d) we show the results of a convergence study of the square
plate with simply supported and clamped edge conditions for various triangular and

Fig. 4.15 (Continued) Castleton railway bridge: general geometry and details of finite element subdivision.
(c) moment components (ton ftft~') under uniform load of 150 Ibft~? with computer plot of contours.
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Numerical examples
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Numerical examples
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Table 4.3 List of elements for comparison of performance in Fig. 4.16: (a) 9 degree-of-freedom triangles;
(b) 12 degree-of-freedom rectangles; (c) 16 degree-of-freedom rectangle

Code Reference Symbol Description and comment

(a) .

BCIZ 1 Bazeley et al. o Displacement, non-conforming (fails patch test)
PAT Specht49 A Displacement, non-conforming

BCIZ 2 Bazeley e al."! O Displacement, conforming

(HCT) Clough and Tocher'”

DKT Stricklin ez al.*® and Dhatt* ) Discrete Kirchhoff

(b) 2

ACM Zienkiewicz and Cheung™ A Displacement, non-conforming
Q19 Clough and Felippa]5 o Displacement, conforming
DKQ Batoz and Ben Tohar®! O Displacement, conforming

(© 17

BF Bogner et al. o Displacement conforming

rectangular elements and two load types. This type of diagram is conventionally used
for assessing the behaviour of various elements, and we show on it the performance of
the elements already described as well as others to which we shall refer to later.

Table 4.3 gives the key to the various element ‘codes’ which include elements yet to
be described.*>

100
80 [
A

< 40 S ~C S5
S . Se.
c 2.
g 20 o N
S \ .
S \““o ﬁ\ﬁ
5 I “a

10 “Gs
c ~
- 8 Os;
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©
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2 oA

2 P

<>
1

20 40 80100 200 400 800 1000
Number of degrees of freedom

A Fifth-order conforming triangle'9-23
B Low-order conforming element

( p= 2)10 ah
C Hybrid®

Fig. 4.17 Rate of convergence in energy norm versus degree of freedom for three elements: the problem of a
slightly skewed, simply supported plate (80°) with uniform mesh subdivision.”



Singular shape functions for the simple triangular element

The comparison singles out only one displacement and each plot uses the number
of mesh divisions in a quarter of the plate as abscissa. It is therefore difficult to deduce
the convergence rate and the performance of elements with multiple nodes. A more
convenient plot gives the energy norm ||u||, versus the number of degrees of freedom
N on a logarithmic scale. We show such a comparison for some elements in Fig. 4.17
for a problem of a slightly skewed, simply supported plate.” It is of interest to observe
that, owing to the singularity, both high- and low-order elements converge at almost
identical rates (though, of course, the former give better overall accuracy). Different
rates of convergence would, of course, be obtained if no singularity existed (see
Chapter 14 of Volume 1).

Conforming shape functions with nodal singularities

4.9 General remarks

It has already been demonstrated in Sec. 4.3 that it is impossible to devise a simple
polynomial function with only three nodal degrees of freedom that will be able to
satisfy slope continuity requirements at all locations along element boundaries. The
alternative of imposing curvature parameters at nodes has the disadvantage, however,
of imposing excessive conditions of continuity (although we will investigate some of
the elements that have been proposed from this class). Furthermore, it is desirable
from many points of view to limit the nodal variables to three quantities only.
These, with simple physical interpretation, allow the generalization of plate elements
to shells to be easily interpreted also.

It is, however, possible to achieve C; continuity by provision of additional shape
functions for which, in general, second-order derivatives have non-unique values at
nodes. Providing the patch test conditions are satisfied, convergence is again assured.

Such shape functions will be discussed now in the context of triangular and
quadrilateral elements. The simple rectangular shape will be omitted as it is a special
case of the quadrilateral.

4.10 Singular shape functions for the simple triangular
element

Consider for instance either of the following sets of functions:

LL2L} (L, — L,
Ejk _ it k( k j) (472)
(Li + L) (L; + Ly)

or
o LLL(1+ L)
" (Li + L) (L; + Ly)

(4.73)

in which once again i, j, k are a cyclic permutation of 1,2, 3. Both have the property
that along two sides (i—j and i—k) of a triangle (Fig. 4.18) their values and the values
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LS5 (1+ Ly)
(Ly+ Lp) (Ly+ Ly)

w
=g
1 2

L1515 (L= Ly)
W= ———————
(Ly+Lp) (Ly+ Lg)

w
=€2
1 2

Fig. 4.18 Some singular area coordinate functions.

of their normal slope are zero. On the third side (j—k) the function is zero but a
normal slope exists. In both, its variation is parabolic. Now, all the functions
used to define the non-conforming triangle [see Eq. (4.55)] were cubic and hence
permit also a parabolic variation of the normal slope which is not uniquely defined
by the two end nodal values (and hence resulted in non-conformity). However, if
we specify as an additional variable the normal slope of w at a mid-point of each
side then, by combining the new functions ¢; with the other functions previously
given, a unique parabolic variation of normal slope along interelement faces is achieved
and a compatible element results.

Apparently, this can be achieved by adding three such additional degrees of
freedom to expression (4.55) and proceeding as described above. This will result in
an element shown in Fig. 4.19(a), which has six nodes, three corner ones as before
and three additional ones at which only normal slope is specified. Such an element
requires the definition of a node (or an alternative) to define the normal slope and
also involves assembly of nodes with differing numbers of degrees of freedom. It is
necessary to define a unique normal slope for the parameter associated with the
mid-point of adjacent elements. One simple solution is to use the direction of increas-
ing node number of the adjacent vertices to define a unique normal.

Another alternative, which avoids the above difficulties, is to constrain the mid-side
node degree of freedom. For instance, we can assume that the normal slope at the
centre-point of a line is given as the average of the two slopes at the ends. This,
after suitable transformation, results in a compatible element with exactly the same
degrees of freedom as that described in previous sections [see Fig. 4.19(b)].

The algebra involved in the generation of suitable shape functions along the lines
described here is quite extensive and will not be given fully.

First, the normal slopes at the mid-sides are calculated from the basic element
shape functions [Eq. (4.57)] as

(RN —
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Fig. 4.19 Various conforming triangular elements.

Similarly, the average values of the nodal slopes in directions normal to the sides are
calculated from these functions:

ow\  fow\*  [ow\']T -
il i =7Za° 4.75
@) G Gl -2 (473)
The contribution of the € functions to these slopes is added in proportions of € — ;
and is simply (as these give unit normal slope)

1=[n mn nl (4.76)

On combining Eq. (4.57) and the last three relations we have
Za*=7a°+vy (4.77)
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from which it immediately follows on finding y that
WZNan—F [623, €31, 512](Z—Z)a° (478)

in which N? are the non-conforming shape functions defined in Eq. (4.57). Thus, new
shape functions are now available from Eq. (4.78).

An alternative way of generating compatible triangles was developed by Clough
and Tocher.!” As shown in Fig. 4.19(a) each element triangle is first divided into
three parts based on an internal point p. For each ijp triangle a complete cubic
expansion is written involving 10 terms which may be expressed in terms of the
displacement and slopes at each vertex and the mid-side slope along the ij edge.

Matching the values at the vertices for the three sub-triangles produces an element
with 15 degrees of freedom: 12 conventional degrees of freedom at nodes 1, 2, 3 and p;
and three normal slopes at nodes 4, 5, 6. Full C; continuity in the interior of the
element is achieved by constraining the three parameters at the p node to satisfy
continuous normal slope at each internal mid-side. Thus, we achieve an element
with 12 degrees of freedom similar to the one previously outlined using the singular
shape functions. Constraining the normal slopes on the exterior mid-sides leads to
an element with 9 degrees of freedom [see Fig. 4.19(b)].

These clements are achieved at the expense of providing non-unique values of
second derivatives at the corners. We note, however, that strains are in general also
non-unique in elements surrounding a node (e.g. constant strain triangles in elasticity
have different strains in each element surrounding each node). In the previously
developed shape functions ¢j an infinite number of values to the second derivatives
are obtained at each node depending on the direction the corner is approached.
Indeed, the derivation of the Clough and Tocher triangle can be obtained by defining
an alternative set of ¢ functions, as has been shown in reference 11.

As both types of elements lead to almost identical numerical results the preferable
one is that leading to simplified computation. If numerical integration is used (as
indeed is always strongly recommended for such elements) the form of functions
continuously defined over the whole triangle as given by Eqs (4.57) and (4.78) is
advantageous, although a fairly high order of numerical integration is necessary
because of the singular nature of the functions.

4.11 An 18 degree-of-freedom triangular element with
conforming shape functions

An element that presents a considerable improvement over the type illustrated in
Fig. 4.19(a) is shown in Fig. 4.19(c). Here, the 12 degrees of freedom are increased
to 18 by considering both the values of w and its cross derivative 82w/8s8n, in
addition to the normal slope dw/dn, at element mid-sides.”

Thus an equal number of degrees of freedom is presented at each node. Imposition
of the continuity of cross derivatives at mid-sides does not involve any additional
constraint as this indeed must be continuous in physical situations.

*This is, in fact, identical to specifying both dw/dn and dw/Jds at the mid-side.



Compatible quadrilateral elements

The derivation of this element is given by Irons'* and it will suffice here to say that
in addition to the modes already discussed, fourth-order terms of the type illustrated
in Fig. 4.10(d) and ‘twist’ functions of Fig. 4.18(b) are used. Indeed, it can be simply
verified that the element contains a// 15 terms of the quartic expansion in addition to
the ‘singularity’ functions.

4.12 Compatible quadrilateral elements

Any of the previous triangles can be combined to produce ‘composite’ compatible
quadrilateral elements with or without internal degrees of freedom. Three such
quadrilaterals are illustrated in Fig. 4.20 and, in all, no mid-side nodes exist on the
external boundaries. This avoids the difficulties of defining a unique parameter and
of assembly already mentioned.

In the first, no internal degrees of freedom are present and indeed no improvement
on the comparable triangles is expected. In the following two, 3 and 7 internal degrees
of freedom exist, respectively. Here, normal slope continuity imposed in the last one
does not interfere with the assembly, as internal degrees of freedom are in all cases
eliminated by static condensation.®> Much improved accuracy with these elements
has been demonstrated by Clough and Felippa.'®

An alternative direct derivation of a quadrilateral element was proposed by
Sander'? and Fraeijs de Veubeke.'*'® This is along the following lines. Within a
quadrilateral of Fig. 4.21(a) a complete cubic with 10 constants is taken, giving the
first component of the displacement which is defined by three functions. Thus,

w= "+ wP + e
. (4.79)
W= +asx+ -+ gy

The second function w® is defined in a piecewise manner. In the lower triangle of
Fig. 4.21(b) it is taken as zero; in the upper triangle a cubic expression with three
constants merges with slope discontinuity into the field of the lower triangle. Thus,
in jkm,

W = o) + ) + a3 xXy” (4.80)

in terms of the locally specified coordinates x" and y'. Similarly, for the third function,
Fig. 4.21(c), w° = 0 in the lower triangle, and in imj we define

Wc — al4y//2 + alsy/B + aléx"y”z (4.81)
(a) (b) Three internal degrees  (c) Seven internal degrees
of freedom of freedom

Fig. 4.20 Some composite quadrilateral elements.
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13,16

Fig. 4.21 The compatible functions of Fraeijs de Veubeke.

The 16 external degrees of freedom are provided by 12 usual corner variables and four
normal mid-side slopes and allow the 16 constants «; to a4 to be found by inversion.
Compatibility is assured and once again non-unique second derivatives arise at
corners.

Again it is possible to constrain the mid-side nodes if desired and thus obtain a 12
degree-of-freedom element. The expansion can be found explicitly, as shown by
Fraeijs de Veubeke, and a useful element generated.'®

The element described above cannot be formulated if a corner of the quadrilateral
is re-entrant. This is not a serious limitation but needs to be considered on occasion if
such an element degenerates to a near triangular shape.

4.13 Quasi-conforming elements

The performance of some of the conforming elements discussed in Secs 4.10—4.12 is
shown in the comparison graphs of Fig. 4.16. It should be noted that although
monotonic convergence in energy norm is now guaranteed, by subdividing each
mesh to obtain the next one, the conforming triangular elements of references 10
and 11 perform almost identically but are considerably stiffer and hence less accurate
than many of the non-conforming elements previously cited.

To overcome this inaccuracy a quasi-conforming or smoothed element was derived
by Razzaque and Irons.**** For the derivation of this element substitute shape
functions are used.

The substitute functions are cubic functions (in area coordinates) so designed as to
approximate in a least-square sense the singular functions ¢ and their derivatives used
to enforce continuity [see Eqs (4.72)—(4.78)], as shown in Fig. 4.22.

The algebra involved is complex but a full subprogram for stiffness computations is
available in reference 33. It is noted that this element performs very similarly to the
simper, non-conforming element previously derived for the triangle. It is interesting
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LG (1+L)
g= ——
(e L) (Li+ L)

Zero boundary slope

gf =16 L;(2Li—1) (Li—1)

Fig. 4.22 Least-square substitute cubic shape function ™ in place of rational function ¢ for plate bending
triangles.

to observe that here the non-conforming element is developed by choice and not to
avoid difficulties. Its validity, however, is established by patch tests.

Conforming shape functions with additional
degrees of freedom

4.14 Hermitian rectangle shape function

With the rectangular element of Fig 4.7 the specification of 82w/ 0x0dy as a nodal
parameter is always permissible as it does not involve ‘excessive continuity’. It is
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easy to show that for such an element polynomial shape functions giving compatibil-
ity can be easily determined.

A polynomial expansion involving 16 constants [equal to the number of nodal
parameters w;, (Ow/dx);, (Ow/dy); and (8*w/dxdy);] could, for instance, be written
retaining terms that do not produce a higher-order variation of w or its normal
slope along the sides. Many alternatives will be present here and some may not
produce invertible C matrices [see Eq. (4.41)].

An alternative derivation uses Hermitian polynomials which permit the writing
down of suitable functions directly. An Hermitian polynomial

H,y(x) (4.82)
is a polynomial of order 2n + 1 which gives, for m = 0 to n,

d*H", {1, when k=m and x=x;

dxk 0, when k#m orwhen x=ux;

A set of first-order Hermitian polynomials is thus a set of cubic terms giving shape
functions for a line element Jj at the ends of which slopes and values of the function
are used as variables. Figure 4.23 shows such a set of cubics, and it is easy to verify
that the shape functions are given by

2 3
X X
2 3
X X
Hlll(x) :X—ZT‘FF
2 3
1 X X
Hol) =3 =2
2 3
X X
) ==+ 3

H(x) A

1.0
0.8
0.6
0.4

0.2

0

-0.2

Fig. 4.23 First-order Hermitian functions.



The 21 and 18 degree-of-freedom triangle

where L is the length of the side. These are precisely the ‘beam’ functions used in
Chapter 2 of Volume 1.
It is easy to verify that the following shape functions

N; = [Héf(x)Héi(y)y Hlli(X)H(%i(J’)» Héi(x)Hlli()/)’ Hlli(x)Hlli(y)] (4.83)
correspond to the values of

ow  Ow O*w

ox’ Oy’ 0Ox0y’
specified at the corner nodes, taking successively unit values at node i and zero at
other nodes.

An element based on these shape functions has been developed by Bogner et al.!”
and used with success. Indeed it is the most accurate rectangular element available
as indicated by results in Fig. 4.16. A development of this type of element to
include continuity of higher derivatives is simple and outlined in reference 18. In
their undistorted form the above elements are, as for all rectangles, of very limited
applicability.

4.15 The 21 and 18 degree-of-freedom triangle

If continuity of higher derivatives than first is accepted at nodes (thus imposing a
certain constraint on non-homogeneous material and discontinuous thickness situa-
tions as explained in Sec. 4.2.4), the generation of slope and deflection compatible
elements presents less difficulty.

Considering as nodal degrees of freedom

ow  Ow  Fw 9w *w

axv 87)/7 @7 M? ayz?

w,

a triangular element will involve at least 18 degrees of freedom. However, a complete
fifth-order polynomial contains 21 terms. If, therefore, we add three normal slopes at
the mid-side as additional degrees of freedom a sufficient number of equations appear
to exist for which the shape functions can be found with a complete quintic
polynomial.

Along any edge we have six quantities determining the variation of w (displace-
ment, slopes, and curvature at corner nodes), that is, specifying a fifth-order
variation. Thus, this is uniquely defined and therefore w is continuous between
elements. Similarly, Ow/dn is prescribed by five quantities and varies as a fourth-
order polynomial. Again this is as required by the slope continuity between
elements.

If we write the complete quintic polynomial as”

W:a1+a2x+-~~+o¢21y5 (484)

* For this derivation use of simple cartesian coordinates is recommended in preference to area coordinates.
Symmetry is assured as the polynomial is complete.
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using the ordering in the Pascal triangle [see Fig. 8.12 of Volume 1] we can proceed
along the lines of the argument used to develop the rectangle in Sec. 4.3 and write

5
Wi =0+ QX+ -+ Q)

8w 4
o) =t F A
i

ox
ow
<> = a3+ 4 Say
dy )i
82”/ 3
(a) Ty

and so on, and finally obtain an expression
a°=Ca (4.85)

in which C is a 21 x 21 matrix.

The only apparent difficulty in the process that the reader may experience in
forming this is that of the definition of the normal slopes at the mid-side nodes. How-
ever, if one notes that

@ B ow

on 0s ¢ ox

in which ¢ is the angle of a particular side to the x axis, the manner of formulation
becomes simple. It is not easy to determine an explicit inverse of C, and the stiffness
expressions, etc., are evaluated as in Eqs (4.30)—(4.33) by a numerical inversion.

The existence of the mid-side nodes with their single degree of freedom is an
inconvenience. It is possible, however, to constrain these by allowing only a cubic
variation of the normal slope along each triangle side. Now, explicitly, the matrix
C and the degrees of freedom can be reduced to 18, giving an element illustrated in
Fig. 4.19(e) with three corner nodes and 6 degrees of freedom at each node.

Both of these elements were described in several independently derived publications
appearing during 1968 and 1969. The 21 degree-of-freedom element was described
independently by Argyris ez al.,” Bell,'”” Bosshard,? and Visser,* listing the authors
alphabetically. The reduced 18 degree-of-freedom version was developed by Argyris
et al.,23 Bell,lg Cowper et al.*" and Irons."* An essentially similar, but more
complicated, formulation has been developed by Butlin and Ford,”® and mention
of the element shape functions was made earlier by Withum® and Felippa.**

Itis clear that many more elements of this type could be developed and indeed some
are suggested in the above references. A very inclusive study is found in the work of
Zenisek,” Peano,®® and others.’’ = However, it should always be borne in mind that
all the elements discussed in this section involve an inconsistency when discontinuous
variation of material properties occurs. Further, the existence of higher-order deriva-
tives makes it more difficult to impose boundary conditions and indeed the simple
interpretation of energy conjugates as ‘nodal forces’ is more complex. Thus, the
engineer may still feel a justified preference for the more intuitive formulation
involving displacements and slopes only, despite the fact that very good accuracy is
demonstrated in the references cited for the quartic and quintic elements.

+sing % (4.86)
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Avoidance of continuity difficulties — mixed and
constrained elements

4.16 Mixed formulations — general remarks

Equations (4.13)—(4.18) of this chapter provide for many possibilities to approximate
both thick and thin plates by using mixed (i.e. reducible) forms. In these, more than
one set of variables is approximated directly, and generally continuity requirements
for such approximations can be of either C; or C, type. The procedures used in
mixed formulations generally have been described in Chapters 11-13 of Volume 1,
and the reader is referred to these for the general principles involved. The options
open are large and indeed so is the number of publications proposing various
alternatives. We shall therefore limit the discussion to those that appear most
useful.

To avoid constant reference to the beginning of this chapter, the four governing
equations (4.13)—(4.18) are rewritten below in their abbreviated form with dependent
variable sets M, 0, S, and w:

M—-DLO=0 (4.87)
és+e—VW:0 (4.88)
L'™M+S=0 (4.89)
ViS+¢=0 (4.90)

in which @ = k Gt. To these, of course, the appropriate boundary conditions can be
added. For details of the operators, etc., the fuller forms previously quoted need to be
consulted.

Mixed forms that utilize direct approximations to all the four variables are not
common. The most obvious set arises from elimination of the moments M, that is

L'DLO+S =0 (4.91)
Tsio-ww=o (4.92)
«

ViS+4¢=0 (4.93)

and is the basis of a formulation directly related to the three-dimensional elasticity
consideration. This is so important that we shall devote Chapter 5 entirely to it,
and, of course, there it can be used for both thick and thin plates. We shall, however,
return to one of its derivations in Sec. 4.18.

One of the earliest mixed approaches leaves the variables M and w to be approxi-
mated and eliminates S and 0. The form given is restricted to thin plates and thus
«a = oo is taken.

We now can write for Eqs (4.87) and (4.88),

D'M-LVw=0 (4.94)
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and for Eqs (4.89) and (4.90),
VIL'"™M -¢=0 (4.95)
The approximation can now be made directly putting
M=N,M and w=N,Ww (4.96)

where M and w list the nodal (or other) parameters of the expansions, and N, and N,
are appropriate shape functions.

The approximation equations can, as is well known (see Chapter 3 of Volume 1), be
made either via a suitable variational principle or directly in a weighted residual,
Galerkin form, both leading to identical results. We choose here the latter, although
the first presentations of this approximation by Herrmann’® and others’ =" all use
the Hellinger—Reissner principle.

A weak form from which the plate approximation may be deduced is given by

oIl = J SM(-D™'M+LVw)dQ+ J sw(VIL™™ — ¢) dQ + 6T, = 0 (4.97)
Q Q

where 6II,; describes appropriate boundary condition terms. Using the Galerkin
weighting approximations
SM=N,,6M and  éw=N,éw (4.98)

gives on integration by parts the following equation set
A C][™m f
& S
cC 0 w f

M
A= —J NI,D'N,, dQ f, = J (VNH,)T{ o } dr
Q T, M,

ns

where

(4.100)
C= 7J (LNM)TVNW dQ fZ = J NIq dQ+ J NIS,, dr
Q Q T,

where M, and M, are the prescribed boundary moments, and S, is the prescribed
boundary shear force.

Immediately, it is evident that only C, continuity is required for both M and w
interpolation,” and many forms of elements are therefore applicable. Of course,
appropriate patch tests for the mixed formulation must be enforced® and this
requires a necessary condition that

nl’” > nW (4.101)

where n,, stands for the number of parameters describing the moment field and #,, the
number in the displacement field.

Many excellent elements have been developed by using this type of approximation,
though their application is limited because of the difficulty of interconnection with

* It should be observed that, if Cy continuity to the whole M field is taken, excessive continuity will arise and
it is usual to ensure the continuity of M, and M, at interfaces only.
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other structures as well as the fact that the coefficient matrix in Eq. (4.99) is indefinite
with many zero diagonal terms.

Indeed, a similar fate is encountered in numerous ‘equilibrium element’ forms in
which the moment (stress) field is chosen a priori in a manner satisfying Eq. (4.95).
Here the research of Fraeijs de Veubeke”” and others'>*® has to be noted. It must,
however, be observed that the second of these elements® is in fact identical to the
mixed element developed by Herrmann’' and Hellan” (see also reference 52).

4.17 Hybrid plate elements

Hybrid elements are essentially mixed elements in which the field inside the element is
defined by one set of parameters and the one on the element frame by another, as
shown in Fig. 4.24. The latter are generally chosen to be of a type identical to
other displacement models and thus can be readily incorporated in a general program
and indeed used in conjunction with the standard displacement types we have already
discussed. The internal parameters can be readily eliminated (being confined to a
single element) and thus the difference from displacement forms are confined to the
element subprogram. The original concept is attributable to Pian®®! who pioneered
this approach, and today many variants of the procedures exist in the context of thin
plate theory.®~"!

In the majority of approximations, an equilibrating stress field is assumed to be
given by a number of suitable shape functions and unknown parameters. In others,
a mixed stress field is taken in the interior. A more refined procedure, introduced
by Jirousek,”””! assumes in the interior a series solution exactly satisfying all the
differential equations involved for a homogeneous field.

All procedures use a suitable linking of the interior parameters with those defined
on the boundary by the ‘frame parameters’. The procedures for doing this are fully

w and dw/dn defined on frame
by usual connection

&0

Interior field ' _
defined by Singularity
independent (crack)
parameters

Fig. 4.24 Hybrid elements.
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described in Chapter 13 of Volume 1 in the context of elasticity equations, and only a

small change of variables is needed to adapt these to the present case. We leave this

extension to the reader who can also consult appropriate references for details.
Some remarks need to be made in the context of hybrid elements.

Remark 1. The first is that the number of internal parameters, n;, must be at least as
large as the number of frame parameters, ng, which describe the displacements,
less the number of rigid-body modes if singularity of the final (stiffness) matrix
is to be avoided. Thus, we require that

for plates.

Remark 2. The second remark is a simple statement that it is possible, but counter-
productive, to introduce an excessive number of internal parameters that
simply give a more exact solution to a ‘wrong’ problem in which the frame is
constraining the interior of an element. Thus additional accuracy is not achieved
overall.

Remark 3. Most of the formulations are available for non-homogeneous plates (and
hence non-linear problems). However, this is not true for the Trefftz-hybrid
elements”””! where an exact solution to the differential equation needs to be
available for the element interior. Such solutions are not known for arbitrary
non-homogeneous interiors and hence the procedure fails. However, for homo-
geneous problems the elements can be made much more accurate than any of
the others and indeed allow a general polygonal element with singularities and/
or internal boundaries to be developed by the use of special functions (see
Fig. 4.24). Obviously, this advantage needs to be borne in mind.

A number of elements matching (or duplicating) the displacement method have
been developed and the performance of some of the simpler ones is shown in
Fig. 4.16. Indeed, it can be shown that many hybrid-type elements duplicate precisely
the various incompatible elements that pass the convergence requirement. Thus, it is
interesting to note that the triangle of Allman® gives precisely the same results as the
‘smoothed’ Razzaque clement of references 33 and 34 or, indeed, the element of
Sec. 4.5.

4.18 Discrete Kirchhoff constraints

Another procedure for achieving excellent element performance is achieved as a
constrained (mixed) element. Here it is convenient (though by no means essential)
to use a variational principle to describe Eqs (4.91) and (4.93). This can be written
simply as the minimization of the functional

1 1 1
= J (LO)"D (LO) d + J ST-sd0 - J wq dQQ + II,; = minimum
2 Ja 2 )Jo « Q

(4.103)
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subject to the constraint that Eq. (4.92) be satisfied, that is, that
1
—S+0-Vw=0 (4.104)
o

We shall use this form for general thick plates in Chapter 5, but in the case of thin
plates with which this chapter is concerned, we can specialize by putting a = oo
and rewrite the above as

1

=3 J (L8)"D (L) dQ — J wq dQ + Ty, = minimum (4.105)
Q Q

subject to
0-Vw=0 (4.106)

and we note that the explicit mention of shear forces S is no longer necessary.
To solve the problem posed by Eqs (4.105) and (4.106) we can

1. approximate w and 0 by independent interpolations of C, continuity as
w=N,%w and 0=N,0 (4.107)

2. impose a discrete approximation to the constraint of Eq. (4.106) and solve the
minimization problem resulting from substitution of Eq. (4.107) into Eq. (4.105)
by either discrete elimination, use of suitable lagrangian multipliers, or penalty
procedures.

In the application of the so-called discrete Kirchhoff constraints, Eq. (4.106) is
approximated by point (or subdomain) collocation and direct elimination is used to
reduce the number of nodal parameters. Of course, the other means of imposing the
constraints could be used with identical effect and we shall return to these in the
next chapter. However, direct elimination is advantageous in reducing the final
total number of variables and can be used effectively.

4.18.1 One-dimensional beam example

We illustrate the process to impose discrete constraints on a simple, one-dimensional,
example of a beam (or cylindrical bending of a plate) shown in Fig. 4.25. In this,
initially the displacements and rotations are taken as determined by a quadratic
interpolation of an identical kind and we write in place of Eq. (4.107),

{Z}:iN{Z} (4.108)

where i are the three element nodes.
The constraint is now applied by point collocation at coordinates x,, and x5 of the
beam; that is, we require that at these points

ow
22 —
ox

0 (4.109)

159



160 Plate bending approximation

Constraint here

/ \ >
=== O
2 1

2
{g/} =2 Ng; {W} =% Ng;
i=1 0 i=1

Fig. 4.25 A beam element with independent, Lagrangian, interpolation of w and 6 with constraint
ow/ox — 0 = 0 applied at points x.

This can be written by using the interpolation of Eq. (4.108) as two simultaneous

equations
3 B 3
ZNz(xa) i_ZNI{(’Ca)wz:O
! ’:1 (4.110)
ZN,(xﬂ)é, - ZN,{(xﬂ)w, =0
i=1 i=1
where

Ni(x(y) = Ni(x)|X=Xo and N;(X(Y) - <%>

Equations (4.110) can be used to eliminate 15 and 65. Writing Eqs (4.110) explicitly

we have
W3 Wy Wy
Al TV =A ¢ ArQ - 4.111
3{93} 1{91}+ 2{92} @111)

Ni(x,) — Nﬁ(m)]
Ni(xg) — Ni(x5)

where

Ai:

Substitution of the above into Eq. (4.108) results directly in shape functions from
which the centre node has been eliminated, that is,

{Z}:iN{Z} (4.112)

Ni == NII +A51Al

with

where I is a 2 x 2 identity matrix.

If these functions are used for a beam, we arrive at an element that is convergent.
Indeed, in the particular case where x,, and xz are chosen to coincide with the two
Gauss quadrature points the element stiffness coincides with that given by a
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displacement formulation involving a cubic w interpolation. In fact, the agreement is
exact for a uniform beam.

For two-dimensional plate elements the situation is a little more complex, but if we
imagine x to coincide with the direction tangent to an element side, precisely identical
elimination enforces complete compatibility along an element side when both gradients
of w are specified at the ends. However, with discrete imposition of the constraints it is

Virgin Constrained
o—0——0 o—t—0
X2 X2
—> + + Irons%
X2 X2
o—oOo———0 o—t—0
(a) 24 DOF 16 DOF
O——H—O——0 o—tt—0
1 ! ! 1
o —> + + lrons%
T 11 1
O——H—O0—>%—0 o—t—0
(b) 25 DOF 16 DOF
O O———0 o—t—0
1 ! ! 1
—> + +  Lyons%”
T 1] f3
O—H—O0—%—0 o—t—0
(c) 27 DOF 16 DOF
Lyons®”
Irons®®
(semi-loof)
(e) 27 DOF 16 DOF
DOF Degrees of freedom 1 point constraint

X1, etc.

O Nodal DOF [w, 6,, 6
O  Nodal DOF [w]
—4— Nodal DOF [w, 6]
—— Nodal [6,]
—F— Nodal DOF [6,,, 6]

V]

3 integral constraints
I3, etc.

Fig. 4.26 A series of discrete Kirchhoff theory (DKT)-type elements of quadrilateral type.
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not clear a priori that convergence will always occur — though, of course, one can argue
heuristically that collocation applied in numerous directions should result in an accep-
table element. Indeed, patch tests turn out to be satisfied by most elements in which the
w interpolation (and hence the Ow/ds interpolation) have C, continuity.

The constraints frequently applied in practice involve the use of line or subdomain
collocation to increase their number (which must, of course, always be less than the
number of remaining variables) and such additional constraint equations as

ow
Ir = _—— s =
T I <8S 95> dY 0

ow
o= (2¥_ 0= 4.11
Qx Q, <ax 0v> d 0 ( 3)

ow
Iy, = ——0,]|dQ =
Q o <5‘y 9}) d 0

are frequently used. The algebra involved in the elimination is not always easy and the
reader is referred to original references for details pertaining to each particular element.

The concept of discrete Kirchhoff constraints was first introduced by Wempner
et al.,”” Stricklin er al.,” and Dhatt® in 1968—69, but it has been applied extensively
since.”!% In particular, the 9 degree-of-freedom triangle”>** and the complex semi-
loof element of Irons’® are elements which have been successfully used.

Figure 4.26 illustrates some of the possible types of quadrilateral elements achieved
in these references.

4.19 Rotation-free elements

It is possible to construct elements for thin plates in terms of transverse displacement
parameters alone. Nay and Utku used quadratic displacement approximation and mini-
mum potential energy to construct a least-square fit for an element configuration shown
in Fig. 4.27(a).'"™ The element is non-conforming but passes the patch test and therefore
is an admissible form. An alternative, mixed field, construction is given by Ofate and
Zarate for a composite element constructed from linear interpolation on each
triangle.105 In this work a mixed variational principle is used together with a special
approximation for the curvature. We summarize here the steps in the better approach.

A three-field mixed variational form for a thin plate problem based on the Hu—
Washizu functional may be written as

1
=3 J «' DxdA — J M [(LV)w — k] d4 — J wqdA4 + Ty, (4.114)
4 4 4
where now k and M are mixed variables to be approximated, (LV)w are again second
derivatives of displacement w given in Eq. (4.20) and integration is over the area of
the plate middle surface. Variation of Eq. (4.114) with respect to k gives the discrete
constitutive equation

J sk Dk —M]d4 =0 (4.115)

e
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(a) (b)

Fig. 4.27 Elements for rotation-free thin plates: (a) patch for Nay and Utku procedure'®* BPT triangle; and (b)
patch for BPN triangle.'®®

where A, is the domain of the patch for the element. Two alternatives for 4, are
considered in reference 105 and named BPT and BPN as shown in Figs 4.27(a) and
4.27(b), respectively. For the BPT form the integration is taken over the area of the
element ‘ijk’ with area 4, and boundary I',. For the type BPN integration is over
the more complex area A; with boundary I';. Each, however, are simple to construct.
Similarly, variation of Eq. (4.114) with respect to moment gives the discrete curvature
relation

L SMT[(LV)w — ] d4 =0 (4.116)

Finally, the equilibrium equations are obtained from the variation with respect to the
displacement, and are expressed as

J [(LV)éw]'M d4 — J swq dif dA + 6, = 0 (4.117)
A, A

e

A finite element approximation may be constructed in the standard manner by
writing
M=N"M;, k=Nk, and w=N'w, (4.118)
The simplest approximations are for N}' = NI = 1 and linear interpolation over each
triangle for N}'. Equation (4.115) is easily evaluated; however, the other two integrals
have apparent difficulty since a linear interpolation yields zero derivatives within each
triangle. Indeed the curvature is now concentrated in the ‘kinks’ which occur between
contiguous triangles. To obtain discrete approximations to the curvature changes an
integration by parts is used (see Green’s theorem, Appendix G of Volume 1) to rewrite
Eq. (4.116) as

J SMTkdA + J
A,

M gVwdl =0 (4.119)
T,

e
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where
n, 0
g=10 n (4.120)
n, ny

is a matrix of the direction cosines for an outward pointing normal vector n to the

boundary I', and
W
Vw = { ' } (4.121)
W,

In these expressions I', is the part of the boundary within the area of integration 4,.
Thus, for the element type BPT it is just the contour I', as shown in Fig. 4.27(a). For
the element type BPN no slope discontinuity occurs on the boundary I'; shown in
Fig. 4.27(b); however, it is necessary to integrate along the half sides of each triangle
within the patch bounded by I';. The remainder of the derivation is now straight-
forward and the reader is referred to reference 105 for additional details and results.
In this paper results are also presented for thin shells.

We note that the type of element discussed in this section is quite different from
those presented previously in that nodes exist outside the boundary of the element.
Thus, the definition of an element and the assembly process are somewhat different.
In addition, boundary conditions need some special treatments to include in a general
manner.'% Because of these differences we do not consider additional members in this
family. We do note, however, that for explicit dynamic programs some advantages
occur since no rotation parameters need be integrated. Results for thin shells
subjected to impulsive loading are particularly noteworthy.'®’

4.20 Inelastic material behaviour

The preceding discussion has assumed the plate to be a linear elastic material. In
many situations it is necessary to consider a more general constitutive behaviour in
order to represent the physical problem correctly. For thin plates, only the bending
and twisting moment are associated with deformations and are related to the local
stresses through

M, t/2 Tx
M=¢ M, = —J o, pzdz (4.122)
M Xy e Txy

Any of the material models discussed in Chapter 3 which have symmetric stress
behaviour with respect to strains may be used in plate analysis provided an appropriate
plane stress form is available. The symmetry is necessary to avoid the generation of in-
plane force resultants — which are assumed to decouple from the bending behaviour.
If such conditions do not exist it is necessary to use a shell formulation as described in
Chapters 6-9.
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In practice two approaches are considered — one dealing with the individual lamina
using local stress components o, 0, and 7y, and the other using plate resultant forces
M, M, and M, directly.

4.20.1 Numerical integration through thickness

The most direct approach is to use a plane stress form of the stress—strain relation and
perform the through-thickness integration numerically. In order to capture the
maximum stresses at the top and bottom of the plate it is best to use Gauss—
Lobatto-type quadrature formulae'®® where integrals are approximated by

1 N—-1
j SQERF (D)W, + 3 (&) W+ £ (1) Wy (4.123)
- n=2

These formula differ from the typical gaussian quadrature considered previously
and use the end points on the interval directly. This allows computation of first
yield to be more accurate. The values of the parameters £, and W, are given in
Table 4.4 up to the six-point formula. Parameters for higher-order formulae may
be found in reference 106.

Noting that the strain components in plates [see Eq. (4.10)] are asymmetric with
respect to the middle surface of the plate and that the z coordinate is also asymmetric
we can compute the plate resultants by evaluating only half the integral. Accordingly,
we may use

M, o
M= M, » =-2 J o, pzdz (4.124)
Mxy ’ Txy

and here a six-point formula or less will generally be sufficient to compute integrals.
Equation (4.29) is replaced by the non-linear equation given as

U(w) =1f— JQ B'MdQ =0 (4.125)

Table 4.4 Gauss—Lobbato quadrature points and weights

N +§, W,
3 1.0 1/3
0.0 4/3
4 1.0 1/6
V0.2 5/6
5 1.0 0.1
3/7 49/90
0.0 64/90
6 1.0 1/15 R
Vi 0.6/[11(1 = 10)’]

~
S

N
(=]
I
(S5
S

0.6/[12(1 = 19)°]
t1 = (74 2¢y)/21
fz = (7 - 2[0)/21
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The solution process (for a static case) may now proceed by using, for instance, a
Newton—Raphson scheme in which the tangent moduli for the plate are obtained
by using the tangent moduli for the stress components as

dM, /2
AM={ dM, } = [2 J D 2 dz} LVdw =Dy (LV)dw (4.126)
dM,, ’
where D<Tps) (z) is the tangent modulus matrix of a plane stress material model at
each lamina level z, and Dr is the resulting bending tangent stiffness matrix of the

plate.
The Newton—Raphson iteration for the displacement increment is computed as

KY gw® = g® (4.127)
with iterative updates
Wi = 50 4 gw®) (4.128)

until a suitable convergence criterion is satisfied. This follows precisely methods
previously defined for solids.

4.20.2 Resultant constitutive models

A resultant yield function for plates with Huber—von Mises-type material is given by'"’

FM) = (M3 +M; — M M, +3M3,) — Mi(k) <0 (4.129)

where « is an ‘isotropic’ hardening parameter and M, denotes a uniaxial yield
moment and which for homogeneous plates is generally given by

M, =170, (r) (4.130)

in which o, is the material uniaxial yield stress in tension (and compression). We
observe that, in the absence of hardening, M, is the moment that exists when the

entire cross section is at a yield stress.

4.21 Concluding remarks — which elements?

The extensive bibliography of this chapter outlining the numerous approaches
capable of solving the problems of thin, Kirchhoff, plate flexure shows both the
importance of the subject in structural engineering — particularly as a preliminary
to shell analysis — and the wide variety of possible approaches. Indeed, only part
of the story is outlined here, as the next chapter, dealing with thick plate formulation,
presents many practical alternatives of dealing with the same problem.

We hope that the presentation, in addition to providing a guide to a particular
problem area, is useful in its direct extension to other fields where governing
equations lead to C; continuity requirements.



References

Users of practical computer programs will be faced with a problem of ‘which
element’ is to be used to satisfy their needs. We have listed in Table 4.3 some of the

mo

re widely known simple elements and compared their performance in Fig. 4.16.

The choice is not always unique, and much more will depend on preferences and

ind

eed extensions desired. As will be seen in Chapter 6 for general shell problems,

triangular elements are an optimal choice for many applications and configurations.
Further, such elements are most easily incorporated if adaptive mesh generation is to
be used for achieving errors of predetermined magnitude.
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‘Thick’ Reissner—Mindlin plates —
irreducible and mixed formulations

5.1 Introduction

We have already introduced in Chapter 4 the full theory of thick plates from which
the thin plate, Kirchhoff, theory arises as the limiting case. In this chapter we shall
show how the numerical solution of thick plates can easily be achieved and how, in
the limit, an alternative procedure for solving all problems of Chapter 4 appears.

To ensure continuity we repeat below the governing equations [Eqs (4.13)—(4.18),
or Eqs (4.87)—(4.90)]. Referring to Fig. 4.3 of Chapter 4 and the text for definitions,
we remark that all the equations could equally well be derived from full three-
dimensional analysis of a flat and relatively thin portion of an elastic continuum
illustrated in Fig. 5.1. All that it is now necessary to do is to assume that whatever
form of the approximating shape functions in the xy plane those in the z direction
are only linear. Further, it is assumed that o. stress is zero, thus eliminating the
effect of vertical strain.” The first approximations of this type were introduced
quite earlyl’2 and the elements then derived are exactly of the Reissner—Mindlin
type discussed in Chapter 4.

The equations from which we shall start and on which we shall base all subsequent
discussion are thus

M-DLO=0 (5.1)
[see Eqgs (4.13) and (4.87)],
L'™M+S=0 (5.2)
[see Egs (4.18) and (4.89)],
lS—l—ﬂ—VWzO (5.3)
e

where « = kGt is the shear rigidity [see Eqs (4.15) and (4.88)] and
VIS+4=0 (5.4)

* Reissner includes the effect of ¢. in bending but, for simplicity, this is disregarded here.
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Fig. 5.1 An isoparametric three-dimensional element with linear interpolation in the transverse (thickness)
direction and the ‘thick’ plate element.

[see Egs (4.17) and (4.90)]. In the above the moments M, the transverse shear forces S,
and the elastic matrices D are as defined in Chapter 4, and

0

e 0
0
L=|0 ay (5.5)
9 9
dy Ox

defines the strain-displacement operator on rotations 0, and its transpose the equili-
brium operator on moments, M. Boundary conditions are of course imposed on w
and 0 or the corresponding plate forces S,, M,, M, in the manner discussed in
Sec. 4.2.2.

It is convenient to eliminate M from Eqs (5.1)—(5.4) and write the system of three
equations [Eqs (4.91)—(4.93)] as

L'DLO+S=0 (5.6)

1
~S+0-Vw=0 (5.7)
VIS+4¢=0 (5.8)

This equation system can serve as the basis on which a mixed discretization is built —
or alternatively can be reduced further to yield an irreducible form. In Chapter 4 we
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have dealt with the irreducible form which is given by a fourth-order equation in
terms of w alone and which could only serve for solution of thin plate problems,
that is, when a = oo [Eq. (4.21)]. On the other hand, it is easy to derive an alternative
irreducible form which is valid only if a # co. Now the shear forces can be eliminated
yielding two equations;

L'DLO+a(Vw—0)=0 (5.9)
Va(Vw—0)]+¢=0 (5.10)

This is an irreducible system corresponding to minimization of the total potential
energy

11 :% J (L6)'DLOdQ % J (Vw—0)"a(Vw-0)dQ
Q Q

— J wq dQ + Il = minimum (5.11)
Q

as can easily be verified. In the above the first term is simply the bending energy and
the second the shear distortion energy [see Eq. (4.103)].

Clearly, this irreducible system is only possible when a # oo, but it can, obviously,
be interpreted as a solution of the potential energy given by Eq. (4.103) for ‘thin’
plates with the constraint of Eq. (4.104) being imposed in a penalty manner with «
being now a penalty parameter. Thus, as indeed is physically evident, the thin plate
formulation is simply a limiting case of such analysis.

We shall see that the penalty form can yield a satisfactory solution only when
discretization of the corresponding mixed formulation satisfies the necessary conver-
gence criteria.

The thick plate form now permits independent specification of three conditions at
each point of the boundary. The options which exist are:

w or S,

0, or M,

0.\‘ or M}’IX
in which the subscript n refers to a normal direction to the boundary and s a
tangential direction. Clearly, now there are many combinations of possible boundary
conditions.

A ‘fixed’ or ‘clamped’ situation exists when all three conditions are given by

displacement components, which are generally zero, as

w=860,=0,=0
and a free boundary when all conditions are the ‘resultant’ components

Sn:Mn:Mns:O

When we discuss the so-called simply supported conditions (see Sec. 4.2.2), we shall
usually refer to the specification

w=0 and M,=M, =0
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as a ‘soft’ support (and indeed the most realistic support) and to
w=20 M,=0 and 0, =0

as a ‘hard’ support. The latter in fact replicates the thin plate assumptions and,
incidentally, leads to some of the difficulties associated with it.

Finally, there is an important difference between thin and thick plates when
‘point’ loads are involved. In the thin plate case the displacement w remains finite
at locations where a point load is applied; however, for thick plates the presence
of shearing deformation leads to an infinite displacement (as indeed three-
dimensional elasticity theory also predicts). In finite element approximations one
always predicts a finite displacement at point locations with the magnitude increas-
ing without limit as a mesh is refined near the loads. Thus, it is meaningless to com-
pare the deflections at point load locations for different element formulations and
we will not do so in this chapter. It is, however, possible to compare the total
strain energy for such situations and here we immediately observe that for cases
in which a single point load is involved the displacement provides a direct measure
for this quantity.

5.2 The irreducible formulation — reduced integration

The procedures for discretizing Eqs (5.9) and (5.10) are straightforward. First, the
two displacement variables are approximated by appropriate shape functions and
parameters as

0=N©® and w=N,Ww (5.12)
We recall that the rotation parameters @ may be transformed into physical rotations

about the coordinate axes, ﬁ, [see Fig. 4.7], using

. 0 1
0=TO where T{ ) 0] (5.13)

These are often more convenient for calculations and are essential in shell develop-
ments. The approximation equations now are obtained directly by the use of the
total potential energy principle [Eq. (5.11)], the Galerkin process on the weak form,
or by the use of virtual work expressions. Here we note that the appropriate general-
ized strain components, corresponding to the moments M and shear forces S, are

g, = LO=(LN,)0 (5.14)
and

&, =Vw—0=VN,w—N,0 (5.15)

We thus obtain the discretized problem

<JQ(LN9)TDLN9 dQ + JQ NfaN, dQ) 0— <Jﬂ Nja VN, dQ> w=f, (516)
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and
- <J (VN,)TaN, dQ) 0+ (J (VN,)Ta VN, dQ> w=f, (5.17)
0 0
or simply
K,, K, W f,
{ 9]{w} :Ka:(Kb+KS)a:{ “}:f (5.18)
Ko Kgpl L0 fy
with
T [w 8] 8T —(0, 0,
K 0 O
" lo K
waw Kfv()
KS = s s
o Ko

where the arrays are defined by

Kfvw = J (VNW)Ta VN, dQ
Q

éw = - JQ Nga VNW dQ = ( fv())T

(5.19)
Kgg = J N OéNg dQ
Q
Kb, = J (LNy)'DLN, dQ
Q
and forces are given by
JQ NlgdQ + J N'S,dr
' (5.20)

f, = J N M dr
rm

where S,, is the prescribed shear on boundary I'y, and M is the prescribed moment on
boundary T',,,.

The formulation is straightforward and there is little to be said about it a priori.
Since the form contains only first derivatives apparently any C, shape functions of
a two-dimensional kind can be used to interpolate the two rotations and the lateral
displacement. Figure 5.2 shows some rectangular (or with isoparametric distortion,
quadrilateral) elements used in the early work.! ™ All should, in principle, be conver-
gent as C, continuity exists and constant strain states are available. In Fig. 5.3 we
show what in fact happens with a fairly fine subdivision of quadratic serendipity
and lagrangian rectangles as the ratio of thickness to span, /L, varies.

We note that the magnitude of the coefficient « is best measured by the ratio of the
bending to shear rigidities and we could assess its value in a non-dimensional form.
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|:| Node with one lateral

displacement parameter w
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0] 0]
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Qs

QL QH

Fig. 5.2 Some early thick plate elements.

Simply supported Clamped edge
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0.0038| 0.0010 ,
0.0037 L T O I Y | 0.0009 L1 [ AR |
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(a) QS-N =====-~ 3 x 3 Gaussian integration of all terms

Simply supported Clamped edge
0.0044 0.0016
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Fig. 5.3 Performance of (a) quadratic serendipity (QS) and (b) Lagrangian (QL) elements with varying span-to-
thickness L/t, ratios, uniform load on a square plate with 4 x 4 normal subdivisions in a quarter. R is reduced
2 x 2 quadrature and N is normal 3 x 3 quadrature.
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Simply supported Clamped edge
0.0044 0.0016
0.0043~ 0.0015
"En_ 0.0042 Exact thin plate | 0.0014 Exact thin plate
a 0.0041F solution 0.00406| 0.0013 solution 0.00127
£ 0.0040- 0.0012~
0.0039 0.0011 p-
0.0038 0.0010f+
0.0037\\I A | 0'0009'\\ A Y I |
10! 102 103 10* 10! 102 103 10*
Lt Lt
L-R 2 x 2 flexure integration — 1 x 1 shear integration
L-N=====-- 2 x 2 integration of all terms — this gives poor results,

and diverges rapidly as L/fincreases

Fig. 5.4 Performance of bilinear elements with varying span-to-thickness, L/t, values.

Thus, for an isotropic material with o = Gt this ratio becomes

12(1 — ) GtL? L\’

Obviously, ‘thick” and ‘thin” behaviour therefore depends on the L/ ratio.

It is immediately evident from Fig. 5.3 that, while the answers are quite good for
smaller L/t ratios, the serendipity quadratic fully integrated elements (QS) rapidly
depart from the thin plate solution, and in fact tend to zero results (locking) when
this ratio becomes large. For lagrangian quadratics (QL) the answers are better,
but again as the plate tends to be thin they are on the small side.

The reason for this ‘locking’ performance is similar to the one we considered for the
nearly incompressible problem in Chapters 11 and 12 of Volume 1. In the case of plates
the shear constraint implied by Eq. (5.7), and used to eliminate the shear resultant, is too
strong if the terms in which this is involved are fully integrated. Indeed, we sce that the
effect is more pronounced in the serendipity element than in the lagrangian one. In early
work the problem was thus mitigated by using a reduced quadrature, either on all terms,
which we label R in the figure,** or only on the offending shear terms selectively®’
(labelled S). The dramatic improvement in results is immediately noted.

The same improvement in results is observed for linear quadrilaterals in which the
full (exact) integration gives results that are totally unacceptable (as shown in
Fig. 5.4), but where a reduced integration on the shear terms (single point) gives
excellent performance,® although a carefull assessment of the element stiffness
shows it to be rank deficient in an ‘hourglass’ mode in transverse displacements.
(Reduced integration on all terms gives additional matrix singularity.)

A remedy thus has been suggested; however, it is not universal. We note in Fig. 5.3
that even without reduction of integration order, lagrangian elements perform better
in the quadratic expansion. In cubic elements (Fig. 5.5), however, we note that (a)
almost no change occurs when integration is ‘reduced’ and (b), again, lagrangian-
type elements perform very much better.

Many heuristic arguments have been advanced for devising better elements,” !> all
making use of reduced integration concepts. Some of these perform quite well, for
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Simply supported Clamped edge
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g 0.0041 - solution 0.00406| 0.0013|- solution 0.00127
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Simply supported Clamped edge
0.0044 0.0016
0.0043[~ 0.0015¢
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(b) QL-N ====-=--- 4 x 4 Gaussian integration of all terms

Fig. 5.5 Performance of cubic quadrilaterals: (a) serendipity (QS) and (b) lagrangian (QL) with varying span-to-
thickness, L/t, values.

example the so-called ‘heterosis’ element of Hughes and Cohen” illustrated in Fig. 5.3 (in
which the serendipity type interpolation is used on w and a lagrangian one on 0), but all of
the elements suggested in that era fail on some occasions, either locking or exhibiting sin-
gular behaviour. Thus such elements are not ‘robust’ and should not be used universally.

A better explanation of their failure is needed and hence an understanding of how
such elements could be designed. In the next section we shall address this problem by
considering a mixed formulation. The reader will recognize here arguments used in
Volume 1 which led to a better understanding of the failure of some straightforward
elasticity elements as incompressible behaviour was approached. The situation is
completely parallel here.

5.3 Mixed formulation for thick plates
5.3.1 The approximation

The problem of thick plates can, of course, be solved as a mixed one starting
from Eqs (5.6)—(5.8) and approximating directly each of the variables 0, S and w
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independently. Using Eqs (5.6)—(5.8), we construct a weak form as

J sw[V'S+gq]d2=0

Q

J 60" [L'DLO+S]d2 =0 (5.22)
Q

1
J 6ST[S+9—VW} dQ =0
Q (0%

We now write the independent approximations, using the standard Galerkin procedure,
as
w=N,w 0=N,0 and S=N,S
sw =N, 6w 50 = N, 60 and 6S =N, 68
though, of course, other interpolation forms can be used, as we shall note later.

After appropriate integrations by parts of Eq. (5.22), we obtain the discrete
symmetric equation system (changing some signs to obtain symmetry)

(5.23)

0 0 E|(w f,
0 K, C|{0,={T1, (5.24)
E' ¢' H| (S 0

where

J (LNy) "D (LN,) dQ

J (VN,,)'N, dQ
(5.25)
C= —J NJN, dQ
Q

H=-— J NT 1 N, dQ
o "«
and where f,, and f, are as defined in Eq. (5.20).

The above represents a typical three-field mixed problem of the type discussed in
Sec. 11.5.1 of Volume 1, which has to satisfy certain criteria for stability of approx-
imation as the thin plate limit (which can now be solved exactly) is approached.
For this limit we have

=00 and H=0 (5.26)

In this limiting case it can readily be shown that necessary criteria of solution stability
for any element assembly and boundary conditions are that
nyg +n,,
ng + n,, = ng or ap=—1""" > (5.27)
nS
and
ng

ng = n, or Bp=— 0 >1 (5.28)

where ny, n, and n,, are the number of 0, S and W parameters in Egs (5.23).
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When the necessary count condition is not satisfied then the equation system will be
singular. Equations (5.27) and (5.28) must be satisfied for the whole system but, in
addition, they need to be satisfied for element patches if local instabilities and oscilla-
tions are to be avoided.!? ™13

The above criteria will, as we shall see later, help us to design suitable thick plate
elements which show convergence to correct thin plate solutions.

5.3.2 Continuity requirements

The approximation of the form given in Eqs (5.24) and (5.25) implies certain continu-
ities. It is immediately evident that C, continuity is needed for rotation shape
functions N, (as products of first derivatives are present in the approximation), but
that either N,, or N, can be discontinuous. In the form given in Eq. (5.25) a C,
approximation for w is implied; however, after integration by parts a form for C,
approximation of S results. Of course, physically only the component of S normal
to boundaries should be continuous, as we noted also previously for moments in
the mixed form discussed in Sec. 4.16.

In all the early approximations discussed in the previous section, C, continuity was
assumed for both 8 and w variables, this being very easy to impose. We note that such
continuity cannot be described as excessive (as no physical conditions are violated),
but we shall show later that very successful elements also can be generated with
discontinuous w interpolation (which is indeed not motivated by physical considera-
tions).

For S it is obviously more convenient to use a completely discontinuous interpola-
tion as then the shear can be eliminated at the element level and the final stiffness
matrices written simply in standard 0, w terms for element boundary nodes. We
shall show later that some formulations permit a limit case where o' is identically
zero while others require it to be non-zero.

The continuous interpolation of the normal component of S is, as stated above,
physically correct in the absence of line or point loads. However, with such interpola-
tion, elimination of S is not possible and the retention of such additional system
variables is usually too costly to be used in practice and has so far not been adopted.
However, we should note that an iterative solution process applicable to mixed forms
described in Sec. 11.6 of Volume 1 can reduce substantially the cost of such additional
variables.'

5.3.3 Equivalence of mixed forms with discontinuous S
interpolation and reduced (selective) integration

The equivalence of penalized mixed forms with discontinuous interpolation of the
constraint variable and of the corresponding irreducible forms with the same penalty
variable was demonstrated in Sec. 12.5 of Volume 1 following work of Malkus and
Hughes for incompressible problems.!” Indeed, an exactly analogous proof can be
used for the present case, and we leave the details of this to the reader; however,
below we summarize some equivalencies that result.
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(A =two S variables)

Irreducible — with O] [OF—oHo] Mixed — discontinuous
. ) shear interpolation
shear integration [O] [O] = with shear nodes
at2x 2 Gauss points at 2 x 2 Gauss points
[OFHoH<]

Fig. 5.6 Equivalence of mixed form and reduced shear integration in quadratic serendipity rectangle.

Thus, for instance, we consider a serendipity quadrilateral, shown in Fig. 5.6(a), in
which integration of shear terms (involving «) is made at four Gauss points (i.e. 2 x 2
reduced quadrature) in an irreducible formulation [see Eqs (5.16)—(5.20)], we find that
the answers are identical to a mixed form in which the S variables are given by a
bilinear interpolation from nodes placed at the same Gauss points.

This result can also be argued from the limitation principle first given by Fraeijs de
Veubeke.!® This states that if the mixed form in which the stress is independently
interpolated is precisely capable of reproducing the stress variation which is given
in a corresponding irreducible form then the analysis results will be identical. It is
clear that the four Gauss points at which the shear stress is sampled can only
define a bilinear variation and thus the identity applies here.

The equivalence of reduced integration with the mixed discontinuous interpolation
of S will be useful in our discussion to point out reasons why many eclements
mentioned in the previous section failed. However, in practice, it will be found equally
convenient (and often more effective) to use the mixed interpolation explicitly and
eliminate the S variables by element-level condensation rather than to use special
integration rules. Moreover, in more general cases where the material properties
lead to coupling between bending and shear response (e.g. elastic—plastic behaviour)
use of selective reduced integration is not convenient. It must also be pointed out
that the equivalence fails if a varies within an element or indeed if the isoparametric
mapping implies different interpolations. In such cases the mixed procedures are
generally more accurate.

5.4 The patch test for plate bending elements

5.4.1 Why elements fail

The nature and application of the patch test have changed considerably since its early
introduction. As shown in references 13—15 and 19-23 (and indeed as discussed in
Chapters 10—12 of Volume 1 in detail), this test can prove, in addition to consistency
requirements (which were initially the only item tested), the stability of the approxima-
tion by requiring that for a patch consisting of an assembly of one or more elements the
stiffness matrices are non-singular whatever the boundary conditions imposed.

To be absolutely sure of such non-singularity the test must, at the final stage, be
performed numerically. However, we find that the ‘count’ conditions given in
Eqs (5.27) and (5.28) are necessary for avoiding such non-singularity. Frequently,
they also prove sufficient and make the numerical test only a final confirmation.'*!
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Constrained Relaxed

oR = (24-3)/g = 21/g
Br =281 =87

Boundaries constrained
(a)

Boundaries constrained Only 3 DOF
constrained

oR = (63-3)/32 = 60/32
Br = 32120

(b)

Fig. 5.7 'Constrained’ and ‘relaxed’ patch test/count for serendipity (quadrilateral). (In the C test all boundary
displacements are fixed. In the R test only three boundary displacements are fixed, eliminating rigid body
modes.) (a) Single-element test; (b) four-element test.

We shall demonstrate how the simple application of such counts immediately indi-
cates which elements fail and which have a chance of success. Indeed, it is easy to
show why the original quadratic serendipity element with reduced integration (QS-
R) is not robust.

In Fig. 5.7 we consider this element in a single-element and four-element patch
subjected to so-called constrained boundary conditions, in which all displacements
on the external boundary of the patch are prescribed and a relaxed boundary condi-
tion in which only three displacements (conveniently two 6’s and one w) eliminate the
rigid body modes. To ease the presentation of this figure, as well as in subsequent
tests, we shall simply quote the values of ap and [p parameters as defined in
Eqgs (5.27) and (5.28) with subscript replaced by C or R to denote the constrained
or relaxed tests, respectively. The symbol F will be given to any failure to satisfy
the necessary condition. In the tests of Fig. 5.7 we note that both patch tests fail
with the parameter ac being less than 1, and hence the elements will lock under
certain circumstances (or show a singularity in the evaluation of S). A failure in the
relaxed tests generally predicts a singularity in the final stiffness matrix of the assem-
bly, and this is also where frequently computational failures have been observed.

As the mixed and reduced integration elements are identical in this case we see
immediately why the element fails in the problem of Fig. 5.3 (more severely under
clamped conditions). Indeed, it is clear why in general the performance of lagran-
gian-type elements is better as it adds further degrees of freedom to increase ny
(and also n,, unless heterosis-type interpolation is used).’

In Table 5.1 we show a list of the ap and Fp values for single and four element
patches of various rectangles, and again we note that none of these satisfies
completely the necessary requirements, and therefore none can be considered
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Table 5.1 Quadrilateral mixed elements: patch count

Element Reference Single element patch Four element patch

ac Bc QR Br ac Bc QR Br

I
- I Qss4 0
-] (

8 21 8 15 3 60 2
0 8 7 32 5 32 20
F) (F)
Pl o N R R N -
PR | (F) (F)
. - 9 2 8 15 8 23 32 68 32
+ @ QYHS4 2 8 L 8 2 2 ] z
(F) (F)
i i 4 2 2 9
: (F) (F)
" B B & 25
Yatay U Eoo® £ % 3 B B 3
(F)
T——-—il
. 478 0 2 9 2 3 24 8
P st 2 0 2 5 8 i ? :
F— (F) (F) (F)
I
4S1B1%¢ 2 2 1 2 1 3 8
" 84S1B1L2°~27 : 0 2 p s ‘ 8 8
(F)
i | 28 4 4 13 4 19 16 40 1
je Q4S2B2L i 9 7 i 6 T i E
A————————fl

¥ Failure to satisfy necessary conditions.

robust. However, it is interesting to note that the elements closest to satisfaction of
the count perform best, and this explains why the heterosis elements>* are quite
successful and indeed why the lagrangian cubic is nearly robust and often is used
with success.”

Of course, similar approximation and counts can be made for various triangular
elements. We list some typical and obvious ones, together with patch test counts,
in the first part of Table 5.2. Again, none perform adequately and all will result in
locking and spurious modes in finite element applications.

We should note again that the failure of the patch test (with regard to stability)
means that under some circumstances the element will fail. However, in many prob-
lems a reasonable performance can still be obtained and non-singularity observed in
its performance, providing consistency is, of course, also satisfied.
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Table 5.2 Triangular mixed elements: patch count

Element Reference Single element patch Six element patch
ac Be QR Br Qc Be QR Br
1
0 2 2 3 12 18 12
T381 2 5 5 3 i T o T
(F) (F)
0 6 2 3 4 3
T6S3 3 5 3 5 % 7 % 3
(F) (F)
3 6 27 6 57 36 108 36
T1083 5 3 % 5 5 1 % 36
(F) (F)
2 2 17 2 33 12 66 12
T6S1B1 3 5 2 5 i+ 5 i i
(F) (F)
15 2 3 3
Tes3n: N
29 5 )
T3SIBIL % 5 % % % 1(,‘2 % %
A T3SIBIAY 2 2 s 2 15 L 2 z

¥ Failure to satisfy necessary conditions.

Numerical patch test
While the ‘count’ condition of Eqgs (5.27) and (5.28) is a necessary one for stability of
patches, on occasion singularity (and hence instability) can still arise even with its
satisfaction. For this reason numerical tests should always be conducted ascertaining
the rank sufficiency of the stiffness matrices and also testing the consistency condition.
In Chapter 10 of Volume 1 we discussed in detail the consistency test for irreducible
forms in which a single variable set u occurred. It was found that with a second-order
operator the discrete equations should satisfy at least the solution corresponding to a
linear field u exactly, thus giving constant strains (or first derivatives) and stresses. For
the mixed equation set [Eqs (5.6)—(5.8)] again the lowest-order exact solution that has
to be satisfied corresponds to:

1. constant values of moments or LO and hence a linear 0 field;
2. linear w field;
3. constant S field.

The exact solutions for which plate elements commonly are tested and where full
satisfaction of nodal equations is required consist of:
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1. arbitrary constant M fields and arbitrary linear 0 fields with zero shear forces (S = 0);
here a quadratic w form is assumed still yielding an exact finite element solution;

2. constant S and linear w fields yielding a constant 0 field. The solution requires a
distributed couple on the right-hand side of Eq. (5.6) and this was not included
in the original formulation. A simple procedure is to disregard the satisfaction
of the moment equilibrium in this test. This may be done simply by inserting a
very large value of the bending rigidity D.

5.4.2 Design of some useful elements

The simple patch count test indicates how elements could be designed to pass it, and
thus avoid the singularity (instability). Equation (5.28) is always trivial to satisfy for
elements in which S is interpolated independently in each element. In a single-element
test it will be necessary to restrain at least one w degree-of-freedom to prevent rigid
body translations. Thus, the minimum number of terms which can be included in S
for each element is always one less than the number of w parameters in each element.
As patches with more than one element are constructed the number of w parameters
will increase proportionally with the number of nodes and the number of shear
constraints increase by the number of elements. For both quadrilateral and triangular
elements the requirement that n, > n,, — 1 for no boundary restraints ensures that
Eq. (5.28) is satisfied on all patches for both constrained and relaxed boundary
conditions. Failure to satisfy this simple requirement explains clearly why certain
of the elements in Tables 5.1 and 5.2 failed the single-element patch test for the
relaxed boundary condition case.

Thus, a successful satisfaction of the count condition requires now only the consid-
eration of Eq. (5.27). In the remainder of this chapter we will discuss two approaches
which can successfully satisfy Eq. (5.27). The first is the use of discrete collocation con-
straints in which Eq. (5.7) is enforced at preselected points on the boundary and occa-
sionally in the interior of elements. Boundary constraints are often ‘shared’ between
two elements and thus reduce the rate at which n, increases. The other approach is
to introduce bubble or enhanced modes for the rotation parameters in the interior of
elements. Here, for convenience, we refer to both as a ‘bubble mode’ approach. The
inclusion of at least as many bubble modes as shear modes will automatically satisfy
Eq. (5.27). This latter approach is similar to that used in Sec. 12.7 of Volume 1 to
stabilize elements for solving the (nearly) incompressible problem and is a clear viola-
tion of ‘intuition’ since for the thin plate problem the rotations appear as derivatives of
w. Its use in this case is justified by patch counts and performance.

5.5 Elements with discrete collocation constraints

5.5.1 General possibilities of discrete collocation constraints -
quadrilaterals

The possibility of using conventional interpolation to achieve satisfactory perfor-
mance of mixed-type elements is limited, as is apparent from the preceding discussion.
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Fig. 5.8 Collocation constraints on a bilinear element: independent interpolation of S, and S,.

One feasible alternative is that of increasing the element order, and we have already
observed that the cubic lagrangian interpolation nearly satisfies the stability require-
ment and often performs well.>”*> However, the complexity of the formulation is
formidable and this direction is not often used.

A different approach uses collocation constraints for the shear approximation [see
Eq. (5.7)] on the element boundaries, thus limiting the number of S parameters and
making the patch count more easily satisfied. This direction is indicated in the
work of Hughes and Tezduyar,’! Bathe and co-workers,’**® and Hinton and
Huang,“’35 as well as in generalizations by Zienkiewicz et al.*® and others.’’~*
The procedure bears a close relationship to the so-called DKT (discrete Kirchhoff
theory) developed in Chapter 4 (see Sec. 4.18) and indeed explains why these, essen-
tially thin plate, approximations are successful.

The key to the discrete formulation is evident if we consider Fig. 5.8, where a simple
bilinear element is illustrated. We observe that with a C,, interpolation of 0 and w, the
shear strain

_Ow
’YX - ax

is uniquely determined at any point of the side 1-2 (such as point /, for instance) and
that hence [by Eq. (5.3)]

0, (5.29)

S, = av, (5.30)

is also uniquely determined there.
Thus, if a node specifying the shear resultant distribution were placed at that point
and if the constraints [or satisfaction of Eq. (5.3)] were only imposed there, then

1. the nodal value of S, would be shared by adjacent elements (assuming continuity
of a);
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2. the nodal values of S, would be prescribed if the ® and w values were constrained
as they are in the constrained patch test.

Indeed if v, the shear rigidity, were to vary between adjacent elements the values of S,
would only differ by a multiplying constant and arguments remain essentially the
same.

The prescription of the shear field in terms of such boundary values is simple. In the
case illustrated in Fig. 5.8 we interpolate independently

S,=N,S, and S,=N,S, (5.31)
using the shape functions
1
Nix :ﬁ [y =vyurs yi—»]
! | i (5.32)
Ny=——I[x—x, xyp—x]
X — Xy

as illustrated. Such an interpolation, of course, defines N, of Eq. (5.23).

The introduction of the discrete constraint into the analysis is a little more involved.
We can proceed by using different (Petrov—Galerkin) weighting functions, and in
particular applying a Dirac delta weighting or point collocation to Eq. (5.3) in the
approximate form. However, it is advantageous here to return to the constrained
variational principle [see Eq. (4.103)] and seek stationarity of

1 1 1
== J (LO)'DLOJN + = J ST —sdn - J wq dQ + IIy,, = stationary (5.33)
2 Jo 2 )o « Q

where the first term on the right-hand side denotes the bending and the second the
transverse shear energy. In the above we again use the approximations

0=N,0 w=N,w

0 (5.34)
S = NSS Ns == [Nsx7 Nsy]

subject to the constraint Eq. (5.3):
S=a(Vw-20) (5.35)

being applied directly in a discrete manner, that is, by collocation at such points as 7
to IV in Fig. 5.8 and appropriate direction selection. We shall eliminate S from the
computation but before proceeding with any details of the algebra it is interesting
to observe the relation of the element of Fig. 5.8 to the patch test, noting that we
still have a mixed problem requiring the count conditions to be satisfied. (This
indeed is the element of references 32 and 33.) We show the counts on Fig. 5.9 and
observe that although they fail in the four-element assembly the margin is small
here (and for larger patches, counts are satisfactory).” The results given by this ele-
ment are quite good, as will be shown in Sec. 5.9.

The discrete constraints and the boundary-type interpolation can of course be used
in other forms. In Fig. 5.10 we illustrate the quadratic element of Huang and
Hinton.**** Here two points on each side of the quadrilateral define the shears S,

* Reference 33 reports a mathematical study of stability for this element.
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oc=% oag=%
BC =0/p R= 4/3

oR = 2412

R= 12/g

Fig. 5.9 Patch test on (a) one and (b) four elements of the type given in Fig 5.8. (Observe that in a constrained
test boundary values of S are prescribed.)

and S, but in addition four internal parameters are introduced as shown. Now both
the boundary and internal ‘nodes’ are again used as collocation points for imposing
the constraints.

The count for single-element and four-element patches is given in Table 5.3. This
element only fails in a single-element patch under constrained conditions, and
again numerical verification shows generally good performance. Details of numerical
examples will be given later.

It is clear that with discrete constraints many more alternatives for design of
satisfactory elements that pass the patch test are present. In Table 5.3 several

[OF—oF—9]
[©] [0 [a
[OF—oF—9]
6 and w interpolation S, interpolation S, interpolation
and and
collocation nodes collocation nodes

—y

/ / / / Typical shape function

Fig. 5.10 The quadratic lagrangian element with collocation constraints on boundaries and in the internal
domain 3
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Table 5.3 Elements with collocation constraints: patch count. Degrees of freedom: O, w — 1; O, 6 — 2; A,
S—-1n,6,-1

Element Reference Single element patch Four element patch
ac Bc ag Br ac Be ag Br
L 3435 3 4 2 12 27 2 72 40
Br B I QD12 1 i b 3 % 3 @ 2
(F)
: 3 2 24 10 27 16 o) Ep)
7 oe- 2 QD10 b T 0 3 T6 9 5l %
0 0 21 8 15 8 60 24
7 E Q8D8 0 0 3 7 3 5 b i
R 3 2 12 6 15 12 36 20
toEe Q5D6 3 7 % 1 B 5 2% o
32,33 0 0 8 4 3 4 24 12
] I Q4D4 0 0 i 3 1 i T 5
; (F)
Single element patch Six element patch
Q¢ Be QR Br Q¢ Bc QR Br
36 0 0 15 6 21 12 43 24
A TeD6 0 0 % 5 n 7 2% 3
36,44 0 0 9 3 9 45 12
A@ T3D3 0 0 3 3 5 1 b %

¥ Failure to satisfy necessary conditions.

quadrilaterals and triangles that satisfy the count conditions are illustrated. In the
first a modification of the Hinton—Huang element with reduced internal shear con-
straints is shown (second element). Here biquadratic ‘bubble functions’ are used in
the interior shear component interpolation, as shown in Fig. 5.11. Similar improve-
ments in the count can be achieved by using a serendipity-type interpolation, but
now, of course, the distorted performance of the element may be impaired (for
reasons we discussed in Volume 1, Sec. 9.7). Addition of bubble functions on all
the w and 0 parameters can, as shown, make the Bathe—Dvorkin fully satisfy the
count condition. We shall pursue this further in Sec. 5.6.

All quadrilateral elements can, of course, be mapped isoparametrically, remember-
ing of course that components of Shear S and S, parallel to the £, ) coordinates have
to be used to ensure the preservation of the desirable constrained properties
previously discussed. Such ‘directional’ shear interpolation is also essential when
considering triangular elements, to which the next section is devoted. Before, doing
this, however, we shall complete the algebraic derivation of element properties.
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Fig. 5.11 A biquadratic hierarchical bubble for S,.

5.5.2 Element matrices for discrete collocation constraints

The starting point here will be to use the variational principle given by Eq. (5.33) with

the shear variables eliminated directly.

The application of the discrete constraints of Eq. (5.35) allows the ‘nodal’ param-
eters S defining the shear force distribution to be determined explicitly in terms of the

w and 0 parameters. This gives in general terms

S=a [wa n Qeé}

(5.36)

in each element. For instance, for the rectangular element of Fig. 5.8 we can write

Wy — W éxl + éx2
st = —
X « a 2
S — o Wy — w3 O +03
Y b 2
S _ Wy — Wy O +0y
o a 2
SI,V —a ﬂ/l - 1114 0};1 + 0);4
y b 2

bbb 0 0 1
1 0 a —a 110
Q=01 00 b | M V=73,
a 0 0 —a 0

- O O

S O o =

S O = O

S = O O

S O = O

S = O O

(5.37)

—_ o O O
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where

= & &z &7
0, 0, 0, 0,]

w=[Ww o oy ]t
[éxi eyi]

Including the above discrete constraint conditions in the variational principle of
Eq. (5.33) we obtain
1 T ~ 1 ~ - ~ .
= Ejﬂ (LND) DLNgddQ + EJQ IN,(Qe + Q)] &[N, (Qy0 + Q,W)] d©2

— J wq dQ + I, = minimum (5.38)
Q

This is a constrained potential energy principle from which on minimization we
obtain the system of equations

wa Kw@ w fw
JU (5.39)
Ko, Kgol L O fy
The element contributions are

wa = Q:l; KSS Qw

Kw() = Q:l; Kss Q(J = Kgu

Ky = J'Q (LNg)TD (LNp) dQ2 + Qg K, Qp (5.40)

K, = J NTaN, dQ
Q

with the force terms identical to those defined in Eq. (5.20).

These general expressions derived above can be used for any form of discrete con-
straint elements described and present no computational difficulties.

In the preceding we have imposed the constraints by point collocation of nodes
placed on external boundaries or indeed the interior of the element. Other integrals
could be used without introducing any difficulties in the final construction of the stiff-
ness matrix. One could, for instance, require integrals such as

vfse (o)

on segments of the boundary, or

J W{sa@e)] do = 0
Q Os

in the interior of an element. All would achieve the same objective, providing elimina-
tion of the S, parameters is still possible.
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The use of discrete constraints can easily be shown to be equivalent to use of
substitute shear strain matrices in the irreducible formulation of Eq. (5.18). This
makes introduction of such forms easy in standard computer programs. Details of
such an approach are given by Ofate et al

5.5.3 Relation to the discrete Kirchhoff formulation

In Chapter 4, Sec. 4.18, we have discussed the so-called discrete Kirchhoff theory
(DKT) formulation in which the Kirchhoff constraints [i.e. Eq. (5.35) with o = ]
were applied in a discrete manner. The reason for the success of such discrete con-
straints was not obvious previously, but we believe that the formulation presented
here in terms of the mixed form fully explains its basis. It is well known that the
study of mixed forms frequently reveals the robustness or otherwise of irreducible
approaches.

In Chapter 12 of Volume 1 we explained why certain elements of irreducible form
perform well as the limit of incompressibility is approached and why others fail. Here
an analogous situation is illustrated.

It is clear that every one of the elements so far discussed has its analogue in the
DKT form. Indeed, the thick plate approach we have adopted here with « # oo is
simply a penalty approach to the DKT constraints in which direct elimination of
variables was used. Many opportunities for development of interesting and perhaps
effective plate elements are thus available for both the thick and thin range.

We shall show in the next section some triangular elements and their DKT counter-
parts. Perhaps the whole range of the present elements should be termed ‘QnDc’ and
‘TnDc’ (discrete Reissner—Mindlin) elements in order to ease the classification. Here
‘n’ is number of displacement nodes and ‘c’ number of shear constraints.

5.5.4 Collocation constraints for triangular elements

Figure 5.12 illustrates a triangle in which a straightforward quadratic interpolation of
0 and w is used. In this we shall take the shear forces to be given as a complete linear
field defined by six shear force values on the element boundaries in directions parallel
to these. The shear ‘nodes’ are located at Gauss points along each edge and the
constraint collocation is made at the same position.

Writing the interpolation in standard area coordinates [see Chapter 8 of Volume 1]
we have

S=> L (5.41)

where a; are six parameters which can be determined by writing the tangential shear at
the six constraint nodes. Introducing the tangent vector to each edge of the element as

ey
¢ = { o } (542)
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0, wnodes

S nodes

(a) The parameters (6 = 12 DOF,
w=6 DOF and S = 6 DOF)

e
6= { 31 } tangent

€32 vectors

(b) Area coordinates and notation

Fig. 5.12 The T6D6 triangular plate element.

a tangential component of shear on the j-edge (for which L; = 0) is obtained from

Evaluation of Eq. (5.43) at the two Gauss points (defined on interval 0 to 1)
1 1
= ——(V3-1) and g =—=(V3+1 5.44

yields a set of six equations which can be used to determine the six parameters a in
terms of the tangential edge shears S;; and S),. The final solution for the shear inter-
polation then becomes

S:Z L [ Chys _ejy:| @181 +&SpH (5.45)
— A [ =l e 1Sk + 2 Se

in which i,j,k is a cyclic permutation of 1,2,3. This defines uniquely the shape
functions of Eq. (5.23) and, on application of constraints, expresses finally the
shear field of nodal displacements w and rotations 0 in the manner of Eq. (5.36).
The full derivation of the above expression is given in reference 36, and the final
derivation of element matrices follows the procedures of Eqgs (5.38)—(5.40).

The element derived satisfies fully the patch test count conditions as shown in
Table 5.3 as the T6D6 element. This element yields results which are generally ‘too
flexible’. An alternative triangular element which shows considerable improvement
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j

Fig. 5.13 The T3D3 (discrete Reissner—-Mindlin) triangle of reference 44 with w linear, 8 constrained
quadratic, and S; constant and parallel to sides.

in performance is indicated in Fig. 5.13. Here the w displacement is interpolated
linearly and 0 is initially a quadratic but is constrained to have linear behaviour
along the tangent to each element edge.44 Only a single shear constraint is introduced
on each element side with the shear interpolation obtained from Eq. (5.45) by setting

Sp=152=35, (5.46)

The ‘count’ conditions are again fully satisfied for single and multiple element
patches as shown in Table 5.3.

This element is of particular interest as it turns out to be the exact equivalent of the
DKT triangle with 9 degrees of freedom which gave a satisfactory solution for thin
plates.**7 Indeed, in the limit the two elements have an identical performance,
though of course the T3D3 element is applicable also to plates with shear deforma-
tion. We note that the original DKT element can be modified in a different manner
to achieve shear deformability”® and obtain similar results. However, this element
as introduced in reference 48 is not fully convergent.

5.6 Elements with rotational bubble or enhanced modes

As a starting point for this class of elements we may consider a standard functional of
Reissner type given by

Q

m—l J (LO)'DLOIQ 1 J
2 Ja 2 Q

STa'SdO+ J ST(Vw—0)dQ — J wq dQ + I,
Q

= stationary (5.47)

in which approximations for w, @ and S are required.

Three triangular elements designed by introducing ‘bubble modes’ for rotation
parameters are found to be robust, and at the same time excellent performers.
None of these elements is ‘obvious’, and they all use an interpolation of rotations
that is of higher or equal order than that of w. Figure 5.14 shows the degree-of-free-
dom assignments for these triangular elements and the second part of Table 5.2 shows
again their performance in patches.

The quadratic element (T6S3B3) was devised by Zienkiewicz and Lefebvre'
starting from a quadratic interpolation for w and 0. The shear S is interpolated by
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A
A A
(a) Zienkiewicz and Lefebvre'®
A
o [
(b) Xu?®
o) A
[s]

(c) Arnold and Falk®®

O 2 rotation DOF ()
|:| 1 displacement DOF (w)
A 2 shear force DOF (S)

Fig. 5.14 Three robust triangular elements: (a) the T6S3B3 element of Zienkiewicz and Lefebvre:™ (b) the
T651B1 element of Xu:%® (c) the T351B1A element of Arnold and Falk.®

a complete linear polynomial in each element, giving here six parameters, S. Three
hierarchical quartic bubbles are added to the rotations giving the interpolation

6

3
0= z; Ni(Ly)8; + 2 AN;(Ly) Ab;
1= Jj=

where N;(L;) are conventional quadratic interpolations on the triangle (see Sec. 8.8.2
of Volume 1), and shape functions for the quartic bubble modes are given as

AN;(Ly) = L (Ly L, L)
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Thus, we have introduced six additional rotation parameters but have left the number
of w parameters unaltered from those given by a quadratic interpolation. This
element has very desirable properties and excellent performance when the integral
for K, in Eq. (5.25) is computed by using seven points (see Table 9.2 in Chapter 9
of Volume 1) and the other integrals are computed by using four points. Slightly
improved answers can be obtained by using a mixed formulation for the bending
terms. In the mixed form the bending moments are approximated as discontinuous
quadratic interpolations for each component and a u— ¢ form as described in
Sec. 11.4.2 of Volume 1 employed. Using this approach we replace the first integral
in Eq. (5.47) as follows

1 T T 1 Tp-I

,J (L6)'DLOdO _>J (L6)™™ dO _,J MTD'MdQ  (5.48)

2 Jo Q 2 Jo
All other terms in Eq. (5.47) remain the same. The mixed element computed in this
way is denoted as T6S3B3M in subsequent results.

Since the T6S3B3 type elements use a complete quadratic to describe the displace-
ment and rotation field, an isoparametric mapping may be used to produce curved-
sided elements and, indeed, curved-shell elements. Furthermore, by design this type
passes the count test and by numerical testing is proved to be fully robust when
used to analyse both thick and thin plate problems.ls’49 Since the w displacement
interpolation is a standard quadratic interpolation the element may be joined compat-
ibly to tetrahedral or prism solid elements which have six-noded faces.

A linear triangular element [T3S1B1 — Fig. 5.14(b)] with a total of 9 nodal degrees
of freedom adds a single cubic bubble to the linear rotational interpolation and uses
linear interpolation for w with constant discontinuous shear. This element satisfies all
count conditions for solution (see Table 5.2); however, without further enhancements
it locks as the thin plate limit is approached.” As we have stated previously the count
condition is necessary but not sufficient to define successful elements and numerical
testing is always needed. In a later section we discuss a ‘linked interpolation” modifi-
cation which makes this element robust.

A third element employing bubble modes [T3S1B1A — Fig. 5.14(c)] was devised by
Arnold and Falk.* It is of interest to note that this element uses a discontinuous
(non-conforming) w interpolation with parameters located at the mid-side of each
triangle. The rotation interpolation is a standard linear interpolation with an added
cubic bubble. The shear interpolation is constant on each element. This element is
a direct opposite of the triangular element of Morley discussed in Chapter 4 in that
location of the displacement and rotation parameters is reversed. The location of
the displacement parameters, however, precludes its use in combination with
standard solid elements. Thus, this element is of little general interest.

The introduction of successful bubble modes in quadrilaterals is more difficult. The
first condition examined was the linear quadrilateral with a single bubble mode
(Q4S1B1). For this element the patch count test fails when only a single element is
considered but for assemblies above four elements it is passed and much hope was
placed on this condition.”” Unfortunately, a singular mode with a single zero eigen-
value persists in all assemblies when the completely relaxed support conditions are
considered. Despite this singularity the element does not lock and usually gives an
excellent performance.”’
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To avoid, however, any singularity it is necessary to have at least three shear stress
components and a similar number of rotation components of bubble form. No simple
way of achieving a three-term interpolation exist but a successful four-component
form was obtained by Auricchio and Taylor.28 This four-term interpolation for
shear is given by

S Jh B Thm IhEl) S,
Jh % Jhn IhE|] S,
Sy

(5.49)

The Jacobian transformation Jg- is identical to that introduced when describing the
Pian—Sumihara element in Sec. 11.4.4 of Volume 1 and is computed as

0 0
Jll = xf‘{:n:()’ J12 = xJ]‘f:n:O (5 50)

0 0
Ja1 :J/,£|£:n:o’ I :yw|£:n:o

To satisfy Eq. (5.27) it is necessary to construct a set of four bubble modes. An
appropriate form is found to be

Jh =ty Jnn —Jhé

(5.51)
-J I =Bn Jhé

1
ANb :;Nb(ga 77)

in which j is the determinant of the Jacobian transformation J (i.e. not the
determinant of J°) and N, = (1 — &*)(1 — n%) is a bubble mode. Thus, the rotation
parameters are interpolated by using

0= N0+ AN, AG, (5.52)

where N; are the standard bilinear interpolations for the four-noded quadrilateral.
The element so achieved (Q4S2B2) is fully stable.

5.7 Linked interpolation — an improvement of accuracy

In the previous section we outlined various procedures which are effective in ensuring
the necessary count conditions and which are, therefore, essential to make the elements
‘work’ without locking or singularity. In this section we shall try to improve the inter-
polation used to increase the accuracy without involving additional parameters.

The reader will here observe that in the primary interpolation we have used equal-
order polynomials to interpolate both the displacement (w) and the rotations (0).
Clearly, if we consider the limit of thin plate theory

Oy
0= { ’ } =Vw (5.53)
0,

and hence one order lower interpolation for @ appears necessary. To achieve this we
introduce here the concept of linked interpolation in which the primary expression is

199



200

‘Thick’ Reissner—Mindlin plates

written as
0 =N,0 (5.54)
and
w =N, W+ N,,0 (5.55)

Such an expression ensures now that one order higher polynomials can be introduced
for the representation of w without adding additional element parameters. This pro-
cedure can, of course, be applied to any of the elements we have listed in Tables 5.1
and 5.2 to improve the accuracy attainable. We shall here develop such linking for
two types of elements in which the essential interpolations are linear on each edge.

We thus improve the triangular T3S1B1 and by linking L to its formulation we
arrive at T3S1B1L. The same procedure can, of course, be applied to the quadrilat-
erals Q4S1B1 and Q4S2B2 of which only the second is unconditionally stable and
add the letter L.

Similar interpolations have also been used by Tessler and Hughes and termed
‘anisoparametric’. The earliest appearance of linked interpolation appears in the
context of beams by Fraeijs de Veubeke.'® Additional studies in the context of
beams have been performed leading to general families of elements.’® In the context
of thick plates linked interpolation on a three-noded triangle was introduced by Lynn
and co-workers®*® and first extended to permit also thin plate analysis by Xu.>>
Additional presentations dealing with the simple triangular element with nine degrees
of freedom in its reduced form [see Eq. (5.72)] have been given by Taylor and co-
workers. #3758

Quadrilateral elements employing linked interpolation have been developed by
Crisfield,” Zienkiewicz and co-workers,”*?’” and Auricchio and Taylor.28

50,51

5.7.1 Derivation of the linking function

The derivation of the linking function N, 4 is somewhat more complex than that of the
basic shape function. For the linear triangle T3 and the linear quadrilaterals Q4 we
require that these functions be:

1. uniquely defined by the two nodal rotations 0, at the ends of each side to ensure C,
continuity;
2. must introduce quadratic terms in the w interpolation.

We shall write the interpolation as

el
W= Nt g > (Ng)ely (O~ 6,) (5.56)

k=1
where n is the number of vertex nodes on the element (i.e. 3 or 4), /; is the length of
the i—j side, 6; is the rotation at node 7 in the tangent direction of the kth side, and
(N,.9)x are shape functions defining the quadratic w along the side but still maintain-
ing zero w at corner nodes. For the triangular element these are the shape functions
are identical to those arising in the plane six-noded element at mid-side nodes and are
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given by (see Chapter 8 of Volume 1)
ng == 4[L1 L2 L2L3 L3 L1 ] (557)

and for the quadrilateral element these are the shape functions for the eight-noded
serendipity functions given by

N =3[(1-)1-n (1+O0-7) 1=-&)1+n (1-901-n")]
(5.58)

The development of one shape function for the three-noded triangular element with
a total of 9 degrees of freedom is here fully developed using the linked interpolation
concept. The process to develop a linked interpolation for the transverse displace-
ment, w, starts with a full quadratic expansion written in hierarchical form. Thus,
for a triangle we have the interpolation in area coordinates

w = Ll Wi + L2 Wy + L3 w3 + 4L1 L20{1 + 4L2L3062 + 4L3 L1a3 (559)

where w; are the nodal displacements and «; are hierarchical parameters. The hier-
archical parameters are then expressed in terms of rotational parameters. Along
any edge, say the 1-2 edge (where L; = 0), the displacement is given by

w = Ll wq + L2 w» =+ 4L1 L2 (0%] (560)

The expression used to eliminate «; is deduced by constraining the transverse edge
shear to be a constant. Along the edge the transverse shear is given by

ow
=——40 5.61
Y12 Os s ( )

where s is the coordinate tangential to the edge and 6, is the component of the rotation
along the edge. The derivative of Eq. (5.60) along the edge is given by

ow - L —L
W _ Wy Wi +4 1 2 o
Os la s

1 (5.62)

where /5 is the length of the 1-2 side. Assuming a linear interpolation for ¢, along the
edge we have

95 = Ll exl + L2 95‘2 (563)
which may also be expressed as
0, =105 +6y) +5 (05 — 00) (L) — Ly) (5.64)
after noting that L; + L, = 1 along the edge. The transverse shear may now be given
as

wy —w; 1 4 1
2 L~ (93'1 + 9‘\'2) + | o) — 7(05‘1 - 9.92) (Ll - LZ) (565)

112 2

Constraining the strain to be constant gives

) = % (esl - 932) (566)
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yielding the ‘linked’ edge interpolation
w = Ll wi —+ L2 %) —+ % 112 Ll L2 (9‘“ — 9S2) (567)

The normal rotations may now be expressed in terms of the nodal cartesian compo-
nents by using

fy = cos @120, +sin gy, 0, (5.68)

where ¢, is the angle that the normal to the edge makes with the x-axis. Repeating this
process for the other two edges gives the final interpolation for the transverse
displacement.

A similar process can be followed to develop the linked interpolations for the
quadrilateral element. The reader can verify that the use of the constant 1/8 ensures
that constant shear strain on the element side occurs. Further, a rigid body rotation
with 6F = 011-‘ in the element causes no straining. Finally, with rotation 95»( being the
same for adjacent elements C, continuity is ensured.

We have not considered here elements with quadratic or higher basic interpolation.
The linking obviously proceeds on similar lines and some elements with excellent
performance can thus be achieved.

5.8 Discrete ‘exact’ thin plate limit

Discretization of Eq. (5.47) using interpolations of the form*

w=N,Ww+N,,0, 0=N0 +AN,A0,, S=N,S (5.69)
leads to the algebraic system of equations
0 0 o0 K W f,
T T 0
0 K ke k| ] ab (710 (570
K, Ky K, K S 0

where, for simplicity, only the forces f,, and f; due to transverse load ¢ and boundary
conditions are included [see Eq. (5.20)]. The arrays appearing in Eq. (5.70) are given
by

Ky = | (LN,)TD(LN,) de, K.mz—j N,a "N, d,
QO Q

Ky = | (LAN,)'D(LNy)dQ, Ky = J N; [VAN, s — NgJ d€,
¢ ¢ (5.71)

K,, = | (LAN,)"D(LAN,)dQ, K, = —J NI AN, dQ,
Q Q

KSW = N;r VNW dQ
Q

*The term N,,, will be exploited in the next part of this section and thus is included for completeness.
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Adopting a static condensation process at the element level® in which the internal
rotational parameters are eliminated first, followed by the shear parameters, yields
the element stiffness matrix in terms of the element w and @ parameters given by

(- e

A, =K, K;, KJ, — Ky, Ay =K,Kp Ky — Ky
Ags = KKy Kpg — Kgg

K;EvAs_sl sz 7K;’l;vA,;Y ! Asé)
—ALALK,,  —Agy +AGALA

in which
(5.73)

This solution strategy requires the inverse of K;, and A, only. In particular, we note
that the inverse of A, can be performed even if K, is zero (provided the other term is
non-singular). The vanishing of K, defines the thin plate limit. Thus, the above
strategy leads to a solution process in which the thin plate limit is defined without
recourse to a penalty method. Indeed, all terms in the process generally are not subject
to ill-conditioning due to differences in large and small numbers. In the context of
thick and thin plate analysis this solution strategy has been exploited with success
in references 28 and 58.

5.9 Performance of various ‘thick’ plate elements —
limitations of thin plate theory

The performance of both ‘thick’ and ‘thin’ elements is frequently compared for the
examples of clamped and simply supported square plates, though, of course, more
stringent tests can and should be devised. Figure 5.15(a)-5.15(d) illustrates the
behaviour of various elements we have discussed in the case of a span-to-thickness
ratio (L/7) of 100, which generally is considered within the scope of thin plate
theory. The results are indeed directly comparable to those of Fig. 4.16 of Chapter
4, and it is evident that here the thick plate elements perform as well as the best of
the thin plate forms.

It is of interest to note that in Fig. 5.15 we have included some elements that do not
fully pass the patch test and hence are not robust. Many such elements are still used as
their failure occurs only occasionally — although new developments should always
strive to use an element which is robust.

All ‘robust’ elements of the thick plate kind can be easily mapped isoparametrically
and their performance remains excellent and convergent. Figure 5.16 shows isopara-
metric mapping used on a curved-sided mesh in the solution of a circular plate for two
elements previously discussed. Obviously, such a lack of sensitivity to distortion will
be of considerable advantage when shells are considered, as we shall show in
Chapter 8.

Of course, when the span-to-thickness ratio decreases and thus shear deformation
importance increases, the thick plate elements are capable of yielding results not
obtainable with thin plate theory. In Table 5.4 we show some results for a simply
supported, uniformly loaded plate for two L/t ratios and in Table 5.5 we show results
for the clamped uniformly loaded plate for the same ratios. In this example we show
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(a) Centre displacement normalized with respect to thin plate theory
for simply supported, uniformly loaded square plate
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normalized by centre moment of thin plate theory for
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Fig. 5.15 Convergence study for relatively thin plate (L/t = 100): (a) centre displacement (simply supported,
uniform load, square plate); (b) moment at Gauss point nearest centre (simply supported, uniform load, square
plate). Tables 5.1 and 5.2 give keys to elements used.



Performance of various ‘thick’ plate elements — limitations of thin plate theory 205

1.10

1.05

1.00

0.95

0.90 | | | | | I
1 2 3 4 5 6 7 8 910

Mesh density M

(c) Centre displacement normalized with respect to thin plate theory
for clamped, uniformly loaded square plate
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normalized by centre moments of thin plate theory for
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Fig. 5.15 Convergence study for relatively thin plate (L/t = 100): (c) centre displacement (clamped, uniform
load, square plate); (d) moment at Gauss point nearest centre (clamped, uniform load, square plate). Tables 5.1
and 5.2 give keys to elements used.



206 ‘Thick’ Reissner—Mindlin plates

Rayiiy:

NEL =2 NEL=6 NEL =24 NEL = 54
(@)
2 s
£ 6 £ 60
S 5 4 O T6S3B3'°
S 4 £ 4,
s 5 o Q9D12%%
o 2 o 20
g 0 g 0
c -
& 50100 200 300 400 g 50100 200 300 400
Degrees of freedom Degrees of freedom
(b)

Fig. 5.16 Mapped curvilinear elements in solution of a circular clamped plate under uniform load: (a) meshes
used; (b) percentage error in centre displacement and moment.

also the effect of the hard and soft simple support conditions. In the hard support we
assume just as in thin plates that the rotation along the support (¢;) is zero. In the soft
support case we take, more rationally, a zero twisting moment along the support (see
Chapter 4, Sec. 4.2.2).

Table 5.4 Centre displacement of a simply supported plate under uniform load for
two L/t ratios; E=10.92,v =03, L=10,¢g=1

Mesh, M L/t=10;wx 107! L/t =1000; w x 1077
hard support soft support hard support soft support
2 4.2626 4.6085 4.0389 4.2397
4 4.2720 4.5629 4.0607 4.1297
8 4.2727 4.5883 4.0637 4.0928
16 4.2728 4.6077 4.0643 4.0773
32 4.2728 4.6144 4.0644 4.0700
Series 4.2728 4.0624

Table 5.5 Centre displacement of a clamped plate under uniform load
for two L/t ratios; E =10.92, v =0.3, L=10,¢ =1

Mesh, M L/t=10; wx 107" L/t =1000; w x 1077
2 1.4211 1.1469
4 1.4858 1.2362
8 1.4997 1.2583

16 1.5034 1.2637

32 1.5043 1.2646

Series 1.499% 1.2653
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It is immediately evident that:

1. the thick plate (L/t = 10) shows deflections converging to very different values
depending on the support conditions, both being considerably larger than those
given by thin plate theory;

2. for the thin plate (L/t = 1000) the deflections converge uniformly to the thin
(Kirchhoff) plate results for hard support conditions, but for soft support condi-
tions give answers about 0.2 per cent higher in center deflection.

It is perhaps an insignificant difference that occurs in this example between the
support conditions but this can be more pronounced in different plate configurations.

In Fig. 5.17 we show the results of a study of a simply supported rhombic plate with
L/t =100 and 1000. For this problem an accurate Kirchhoff plate theory solution is
available,®! but as will be noticed the thick plate results converge uniformly to a
displacement nearly 4 per cent in excess of the thin plate solution for all the
L/t =100 cases.

Number of degrees of freedom —N

100 300 700 1000 3000 7000 10000
! ! ! ! ! !

043 L/t =100, three-dimensional solution®?

042
Benchmark
Kirchhoff plate theory®'

0.41 /

/— 1/t=100
L/t=1000

S
- o
< 040 - /=100 A On uniformly subdivided
) mesh
% O On adaptively refined
= 0.39 mesh of Fig. 5.19
E=10°
0.38 \ v=0.3
P zavavava
A
0 | oS
VAN
l‘ i |
0.36 | | | |
2.0 25 3.0 3.5 4.0
Log N

Fig. 5.17 Skew 30° simply supported plate (soft support); maximum deflection at A, the centre for various
degrees of freedom N. The triangular element of reference 15 is used.
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This problem is illustrative of the substantial difference that can on occasion arise
in situations that fall well within the limits assumed by conventional thin plate theory
(L/t =100), and for this reason the problem has been thoroughly investigated by
Babuska and Scapolla,®? who solve it as a fully three-dimensional elasticity problem
using support conditions of the ‘soft’ type which appear to be the closest to physical
reality. Their three-dimensional result is very close to the thick plate solution, and
confirms its validity and, indeed, superiority over the thin plate forms. However,
we note that for very thin plates, even with soft support, convergence to the thin
plate results occurs.

5.10 Forms without rotation parameters

It is possible to formulate the thick plate theory without direct use of rotation
parameters. Such an approach has advantages for problems with large rotations
where use of rotation parameters leads to introduction of trigonometric functions
(e.g. see Chapter 11). Here we again consider the case of a cylindrical bending of a
plate (or a straight beam) where each element is defined by coordinates at the two
ends. Starting from a four-noded rectangular element in which the origin of a local
cartesian coordinate system passes through the mid-surface (centroid) of the element
we may write interpolations as (Fig. 5.18)

X = Ni(f7 77);@ + Ni(ga 77)56] + Nk(gv 77)56/( + N/(&v 77)561
y = Ni(&n)Fi + N;i(§&n) T + Nie(&m) T + Ni(§,m) 7

in which N, etc. are the usual 4-noded bilinear shape functions. Noting the rectangu-
lar form of the element, these interpolations may be rewritten in terms of alternative
parameters [Fig. 5.18(b)] as

(5.74)

x =N (§X + N (X,

5.75
)’Zg[Nl(f)ﬂ*'Nz@)fz] 57

where shape functions are
N(©=301-¢, N =5(1+¢) (5.76)

and new nodal parameters are related to the original ones through

(& +%) and =y -

(& +x) and 0= —

¥ (5.77)

)NCZ -
Since the element is rectangular 7, = 1, = f [Fig. 5.18(b)]; however, the above inter-
polations can be generalized easily to elements which are tapered. We can now use
isoparametric concepts to write the displacement field for the element as

U= Ny (€) {al + g;ml} 4N (8) [az ¥ giAaz]
i ' (5.78)
v =N {@1 +727;A171] 4N (9) [752 +Z;A62}
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Fig. 5.18 One-dimensional bending of plates (or beams): (a) geometry, Q4 element; (b) geometry, no rotation
parameters; (c) joining elements with different thickness.

in which 7 is a ‘thickness’ parameter chosen to permit elements of different thickness
to be joined at a common node #n [Fig. 5.18(c)].

It is evident that the above interpolations are identical to those originally written
for the rectangular quadrilateral element in Chapter 8 of Volume 1. Only the param-
eters are different. Based on results obtained in Volume 1 we also know the element
will not perform well in bending situations because of ‘shear locking’, especially when
the aspect ratio of the element thickness to length becomes very small. In order to
improve the behaviour we introduce a three-field approximation by using the
enhanced strain concept described in Sec. 11.5 of Volume 1. Accordingly, the
mixed strain approximation will be taken as

I nt i _
Nix 5=Nix 0 0 U; B
e o2t ] e 00 0]
1 Au,- /62
& =10 0 0 =N, Y+ 10 000 (5.79)
i 3
Vxy 7 - 0 0 f n
O %Nl le %Ni‘x Avi ﬂ“

where [3; are parameters of the enhanced strains (see Sec. 11.5.4, Volume 1). The
remainder of the development is straightforward using the form given in Sec. 11.5

209
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Fig. 5.19 Simply supported 30° skew plate with uniform load (problem of Fig. 5.17); adaptive analysis to
achieve 5 per cent accuracy; L/t = 100, v = 0.3, six-node element T653B3;" 0 = effectivity index, n = per-
centage error in energy norm of estimator.

of Volume 1 and is left as an exercise for the reader. We do note that here it is not
necessary to use a constitutive equation which has been reduced to give zero stress
in the through-thickness (y) direction. By including additional enhanced terms in
the thickness direction one may use the three-dimensional constitutive equations
directly. Such developments have been pursued for plate and shell applications.®
We note that while the above form can be used for flat surfaces and easily extended
for smoothly curved surfaces it has difficulties when ‘kinks’ or multiple branches are
encountered as then there is no unique ‘thickness’ direction. Thus, considerable addi-
tional work remains to be done to make this a generally viable approach.

5.11 Inelastic material behaviour

We have discussed in some detail the problem of inelastic behaviour in Sec. 4.19 of
Chapter 4. The procedures of dealing with the same situation when using the
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Reissner—Mindlin theory are nearly identical and here we will simply refer the reader
to the literature on the subject®”®® and to the previous chapter.

5.12 Concluding remarks — adaptive refinement

The simplicity of deriving and using elements in which independent interpolation of
rotations and displacements is postulated and shear deformations are included
assures popularity of the approach. The final degrees of freedom used are exactly
the same type as those used in the direct approach to thin plate forms in Chapter 4,
and at no additional complexity shear deformability is included in the analysis.

If care is used to ensure robustness, elements of the type discussed in this chapter
are generally applicable and indeed could be used with similar restrictions to other
finite element approximations requiring C; continuity in the limit.

The ease of element distortion will make elements of the type discussed here the first
choice for curved element solutions and they can easily be adapted to non-linear
material behaviour. Extension to geometric non-linearity is also possible; however,
in this case the effects of in-plane forces must be included and this renders the problem
identical to shell theory. We shall discuss this more in Chapter 11.

In Chapters 14 and 15 of Volume 1 we discussed the need for an adaptive approach
in which error estimation is used in conjunction with mesh generation to obtain
answers of specified accuracy. Such adaptive procedures are easily used in plate bend-
ing problems with an almost identical form of error estimation.®’

In Figs 5.19 and 5.20 we show a sequence of automatically generated meshes for the
problem of the skew plate. It is of particular interest to note:

Number of degrees of freedom — N
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Fig. 5.20 Energy norm rate of convergence for the 30° skew plate of Fig. 5.17 for uniform and adaptive
refinement; adaptive analysis to achieve 5 per cent accuracy.
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1. the initial refinement in the vicinity of corner singularity;
2. the final refinement near the simply support boundary conditions where the effects

of transverse shear will lead to a ‘boundary layer’.

Indeed, such boundary layers can occur near all boundaries of shear deformable
plates and it is usually found that the shear error represents a very large fraction of
the total error when approximations are made.
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Shells as an assembly of
flat elements

6.1 Introduction

A shell is, in essence, a structure that can be derived from a plate by initially forming
the middle surface as a singly (or doubly) curved surface. The same assumptions as
used in thin plates regarding the transverse distribution of strains and stresses are
again valid. However, the way in which the shell supports external loads is quite
different from that of a flat plate. The stress resultants acting on the middle surface
of the shell now have both tangential and normal components which carry a major
part of the load, a fact that explains the economy of shells as load-carrying structures
and their well-deserved popularity.

The derivation of detailed governing equations for a curved shell problem presents
many difficulties and, in fact, leads to many alternative formulations, each depending
on the approximations introduced. For details of classical shell treatment the reader is
referred to standard texts on the subject, for example, the well-known treatise by
Fliigge' or the classical book by Timoshenko and Woinowski-Krieger.’

In the finite element treatment of shell problems to be described in this chapter the
difficulties referred to above are eliminated, at the expense of introducing a further
approximation. This approximation is of a physical, rather than mathematical,
nature. In this it is assumed that the behaviour of a continuously curved surface
can be adequately represented by the behaviour of a surface built up of small flat ele-
ments. Intuitively, as the size of the subdivision decreases it would seem that conver-
gence must occur and indeed experience indicates such a convergence.

It will be stated by many shell experts that when we compare the exact solution of a
shell approximated by flat facets to the exact solution of a truly curved shell,
considerable differences in the distribution of bending moments, etc., occur. It is
arguable if this is true, but for simple elements the discretization error is approxi-
mately of the same order and excellent results can be obtained with flat shell element
approximation. The mathematics of this problem is discussed in detail by Ciarlet.?

In a shell, the element generally will be subject both to bending and to ‘in-plane’
force resultants. For a flat element these cause independent deformations, provided
the local deformations are small, and therefore the ingredients for obtaining the
necessary stiffness matrices are available in the material already covered in the
preceding chapters and Volume 1.
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In the division of an arbitrary shell into flat elements only triangular elements can
be used for doubly curved surfaces. Although the concept of the use of such elements
in the analysis was suggested as early as 1961 by Greene et al.,* the success of such
analysis was hampered by the lack of a good stiffness matrix for triangular plate
elements in bending.’~® The developments described in Chapters 4 and 5 open the
way to adequate models for representing the behaviour of shells with such a division.

Some shells, for example those with general cylindrical shapes (can be well
represented by flat elements of rectangular or quadrilateral shape provided the
mesh subdivision does not lead to ‘warped’ elements). With good stiffness matrices
available for such elements the progress here has been more satisfactory. Practical
problems of arch dam design and others for cylindrical shape roofs have been
solved quite early with such subdivisions.”'”

Clearly, the possibilities of analysis of shell structures by the finite element method
are enormous. Problems presented by openings, variation of thickness, or anisotropy
are no longer of consequence.

A special case is presented by axisymmetrical shells. Although it is obviously
possible to deal with these in the way described in this chapter, a simpler approach
can be used. This will be presented in Chapters 7-9.

As an alternative to the type of analysis described here, curved shell elements could
be used. Here curvilinear coordinates are essential and general procedures in Chapter
9 of volume 1 can be extended to define these. The physical approximation involved in
flat elements is now avoided at the expense of reintroducing an arbitrariness of
various shell theories. Several approaches using a direct displacement approximation
are given in references 11-31, and the use of ‘mixed variational principles are given in
references 32—35.

A very simple and effective way of deriving curved shell elements is to use the so-
called ‘shallow’ shell theory approach.'>!*3%7 Here the variables u, v, w define the
tangential and normal components of displacement to the curved surface. If all the
elements are assumed to be tangential to each other, no need arises to transfer
these from local to global values. The element is assumed to be ‘shallow’ with respect
to a local coordinate system representing its projection on a plane defined by nodal
points, and its strain energy is defined by appropriate equations that include deriva-
tives with respect to coordinates in the plane of projection. Thus, precisely the same
shape functions can be used as in flat elements discussed in this chapter and all
integrations are in fact carried out in the ‘plane’ as before.

Such shallow shell elements, by coupling the effects of membrane and bending
strain in the energy expression, are slightly more efficient than flat ones where such
coupling occurs on the interelement boundary only. For simple, small elements the
gains are marginal, but with few higher order large elements advantages appear. A
good discussion of such a formulation is given in reference 22.

For many practical purposes the flat element approximation gives very adequate
answers and also permits an easy coupling with edge beam and rib members, a facility
sometimes not present in a curved element formulation. Indeed, in many practical
problems the structure is in fact composed of flat surfaces, at least in part, and these
can be simply reproduced. For these reasons curved general thin shell forms will not
be discussed here and instead a general formulation of thick curved shells (based
directly on three-dimensional behaviour and avoiding the shell equation ambiguities)
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will be presented in Chapter 8. The development of curved elements for general shell
theories also can be effected in a direct manner; however, additional transformations
over those discussed in this chapter are involved. The interested reader is referred to
references 38 and 39 for additional discussion on this approach. In many respects the
differences in the two approaches are quite similar, as shown by Bischoff and Ramm.*

In most arbitrary shaped, curved shell elements the coordinates used are such that
complete smoothness of the surface between elements is not guaranteed. The shape
discontinuity occurring there, and indeed on any shell where ‘branching’ occurs, is
precisely of the same type as that encountered in this chapter and therefore the
methodology of assembly discussed here is perfectly general.

6.2 Stiffness of a plane element in local coordinates

Consider a typical polygonal flat element in a /ocal coordinate system XjZz subject
simultaneously to ‘in-plane’ and ‘bending’ actions (Fig. 6.1).

Taking first the in-plane (plane stress) action, we know from Chapter 4 of Volume 1
that the state of strain is uniquely described in terms of the # and v displacement of each
typical node i. The minimization of the total potential energy led to the stiffness
matrices described there and gives ‘nodal’ forces due to displacement parameters a® as

(f)» = (K°)Pa>  with  af = {?} = {I;w} 6.1)

i yi

Similarly, when bending was considered in Chapters 4 and 5, the state of strain was
given uniquely by the nodal displacement in the Z direction (w) and the two rotations

My
Bending deformations Bending forces

Fig. 6.1 A flat element subject to ‘in-plane’ and ‘bending’ actions.



Transformation to global coordinates and assembly of elements

0 and 6. This resulted in stiffness matrices of the type

Wi F
(f)° = (K)*a®  with a° =< Oy P ={ M, (6.2)

Before combining these stiffnesses it is important to note two facts. The first is that
the displacements prescribed for ‘in-plane’ forces do not affect the bending deforma-
tions and vice versa. The second is that the rotation 6. does not enter as a parameter
into the definition of deformations in either mode. While one could neglect this
entirely at the present stage it is convenient, for reasons which will be apparent
later when assembly is considered, to take this rotation into account and associate
with it a fictitious couple M. The fact that it does not enter into the minimization
procedure can be accounted for simply by inserting an appropriate number of
zeros into the stiffness matrix.

Redefining the combined nodal displacement as

ﬁi = I:ﬁl 'Iji Wi 95”' 9»5,4 g_ﬂ‘ } T (63)
and the appropriate nodal ‘forces’ as
f=[Fq F;, F;i My M, M;]" (6.4)
we can write
K‘a =f¢ (6.5)
The stiffness matrix is now made up from the following submatrices
K, 00
0 0
= 0 0 0
K, = b 6.6
0 0 Ky 0 (©6)
0 0 0
L 0 0 0 0 0 0 ]
if we note that
a=[a" a® 0,]" (6.7)

The above formulation is valid for any shape of polygonal element and, in particular,
for the two important types illustrated in Fig. 6.1.

6.3 Transformation to global coordinates and assembly
of elements
The stiffness matrix derived in the previous section used a system of local coordinates

as the ‘reference plane’, and forces and bending components also are originally
derived for this system.
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ZA

Fig. 6.2 Local and global coordinates.

Transformation of coordinates to a common global system (which will be denoted
by xyz with the local system still XyZ) will be necessary to assemble the elements and to
write the appropriate equilibrium equations.

In addition it will be initially more convenient to specify the element nodes by their
global coordinates and to establish from these the local coordinates, thus requiring an
inverse transformation. All the transformations are accomplished by a simple
process.

The two systems of coordinates are shown in Fig 6.2. The forces and displacements
of a node transform from the global to the local system by a matrix T giving

a,=Ta, f =TI (6.8)
in which
T= [13 j;] (6.9)
with A being a 3 x 3 matrix of direction cosines between the two sets of axes, ¥
that is,
cos(X,x) cos(¥,y) cos(X,z) Agv Ag Ax
A= |cos(y,x) cos(y,y) cos(¥,z) | = | Apx Ay Ay (6.10)
cos(z,x) cos(z,y) cos(z,z) Az Az A

where cos(X, x) is the cosine of the angle between the X-axis and the x-axis, and so on.
By the rules of orthogonal transformation the inverse of T is given by its transpose
(see Sec. 1.8 of Volume 1); thus we have

a,=T'a, f=T'f (6.11)
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which permits the stiffness matrix of an element in the global coordinates to be
computed as

K, =T 'K, T (6.12)
in which K¢, is determined by Eq. (6.6) in the local coordinates.

The determination of the local coordinates follows a similar pattern. The relation-
ship between global and local systems is given by

X X — Xy
o=Aq Y- (6.13)
z zZ— 2

where X, Vg, Zo 18 the distance from the origin of the global coordinates to the origin of the
local coordinates. As in the computation of stiffness matrices for flat plane and bending
elements the position of the origin is immaterial, this transformation will always suffice
for determination of the local coordinates in the plane (or a plane parallel to the element).

Once the stiffness matrices of all the elements have been determined in a common
global coordinate system, the assembly of the elements and forces follow the standard
solution pattern. The resulting displacements calculated are referred to the global
system, and before the stresses can be computed it is necessary to change these to
the local system for each element. The usual stress calculations for ‘in-plane’ and
‘bending’ components can then be used.

6.4 Local direction cosines

The determination of the direction cosine matrix A gives rise to some algebraic
difficulties and, indeed, is not unique since the direction of one of the local axes is
arbitrary, provided it lies in the plane of the element. We shall first deal with the
assembly of rectangular elements in which this problem is particularly simple; later
we shall consider the case for triangular elements arbitrarily orientated in space.

6.4.1 Rectangular elements

Such elements are limited in use to representing a cylindrical or box type of surface. It
is convenient to take one side of each element and the corresponding X-axis parallel to
the global x-axis. For a typical element ijkm, illustrated in Fig 6.3, it is now easy to
calculate all the relevant direction cosines. Direction cosines of X are, obviously,

A,‘?X = 1 A’- = sz = 0 (6.14)

Xy —

The direction cosines of the y axis have to be obtained by consideration of the
coordinates of the various nodal points. Thus,

A)’,x:()

Ayy _ ym - yi (615)
\/(ym - yi)z + (Zm - Zi)2
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(@)

X

(b) Vertical section ij

Fig. 6.3 A cylindrical shell as an assembly of rectangular elements: local and global coordinates.

A7:

vz

Zm — Zj

(6.16)

\/(ym _yi)z + (Zm - Zi)2

are simple geometrical relations which can be obtained by consideration of the
sectional plane passing vertically through im in the z direction. Similarly, from the

same section, we have for the Z axis

Afx =0
Asy = S = —A,. (6.17)
\/(ym - yi)2 + (Zm - 21)2
Ym — Vi
Az = = Ay, (6.18)

VOn =20+ G — =)

Clearly, the numbering of points in a consistent fashion is important to preserve the

correct signs of the expression.
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6.4.2 Triangular elements arbitrarily orientated in space

An arbitrary shell divided into triangular elements is shown in Fig. 6.4(a). Each element
has an orientation in which the angles with the coordinate planes are arbitrary. The
problem of defining local axes and their direction cosines is therefore more complex
than in the previous simple example. The most convenient way of dealing with the prob-
lem is to use some properties of geometrical vector algebra (see Appendix F, Volume 1).

One arbitrary but convenient choice of local axis direction is given here. We shall
specify that the X axis is to be directed along the side ij of the triangle, as shown in
Fig. 6.4(b).

(b)

X

Fig. 6.4 (a) An assemblage of triangular elements representing an arbitrary shell; (b) local and global coordi-
nates for a triangular element.
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The vector V; defines this side and in terms of global coordinates we have

Xj— X Xji
Vi=<Yi—=yip=1 Vi (6.19)

T Zji

The direction cosines are given by dividing the components of this vector by its length,
that is, defining a vector of unit length

A | Xji
v={ Ay =11 with  f=\/d+3+2  (620)
As. i 7

Now, the zZ direction, which must be normal to the plane of the triangle, needs to be
established. We can obtain this direction from a ‘vector’ cross-product of two sides of
the triangle. Thus,

ViiZmi = Zji Ymi YZijm
Vf = Vji X le‘ = ZjiXmi — XjiZmi = ZXijm (621)
Xji Ymi — VjiXmi XVijm

represents a vector normal to the plane of the triangle whose length, by definition (see
Appendix F of Volume 1), is equal to twice the area of the triangle. Thus,

2 2 2
lf =2A= \/(ng/m) + (Zx[/m) + (xy[/m)
The direction cosines of the Z-axis are available simply as the direction cosines of
V., and we have a unit vector

Afx 1 yjizmi - Zjiymi
V: = Afy = A ZjiXmi — XjiZmi (622)
AZ: xjiymi - yjixmi

Finally, the direction cosines of the j-axis are established in a similar manner as the
direction cosines of a vector normal both to the ¥ direction and to the z direction. If
vectors of unit length are taken in each of these directions [as in fact defined by Eqs
(6.20)—(6.22)] we have simply

A;,x A_?yAScz - AEZAJZ\»‘
vy = A?y =V: X Vg = AEzAX‘x - AEXA)EZ (623)
Afz AEXA.%y - AEyAXx

without having to divide by the length of the vector, which is now simply unity.

The vector operations involved can be written as a special computer routine in which
vector products, normalizing (i.e. division by length), etc., are automatically carried
out® and there is no need to specify in detail the various operations given above.

In the preceding outline the direction of the X axis was taken as lying along one side
of the element. A useful alternative is to specify this by the section of the triangle plane
with a plane parallel to one of the coordinate planes. Thus, for instance, if we desire to
erect the X axis along a horizontal contour of the triangle (i.e. a section parallel to the
xy plane) we can proceed as follows.
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First, the normal direction cosines v: are defined as in Eq. (6.23). Now, the matrix
of direction cosines of X has to have a zero component in the z direction and thus we
have

Asy
Vi =< Ay, (6.24)
()’
As the length of the vector is unity
A+ A% =1 (6.25)
and as further the scalar product of the v; and v must be zero, we can write
AgcAze + A Az, =0 (6.26)
and from these two equations v; can be uniquely determined. Finally, as before
Vi = V: X Vg (6.27)

It should be noted that this transformation will be singular if there is no line in the
plane of the element which is parallel to the xy plane, and some other orientation
must then be selected. Yet another alternative of a specification of the x axis is
given in Chapter 8 where we discuss the development of ‘shell’ elements directly
from the three-dimensional equations of solids.

6.5 ‘Drilling’ rotational stiffness — 6 degree-of-freedom
assembly

In the formulation described above a difficulty arises if all the elements meeting at a
node are co-planar. This situation will happen for flat (folded) shell segments and
at straight boundaries of developable surfaces (e.g. cylinders or cones). The difficulty
is due to the assignment of a zero stiffness in the 6;; direction of Fig. 6.1 and the fact
that classical shell equations do not produce equations associated with this rotational
parameter. Inclusion of the third rotation and the associated ‘force’ F; has obvious
benefits for a finite element model in that both rotations and displacements at
nodes may be treated in a very simple manner using the transformations just
presented.

If the set of assembled equilibrium equations in local coordinates is considered at
such a point we have six equations of which the last (corresponding to the . direc-
tion) is simply

00. =0 (6.28)

As such, an equation of this type presents no special difficulties (solution programs
usually detect the problem and issue a warning). However, if the global coordinate
directions differ from the local ones and a transformation is accomplished, the six
equations mask the fact that the equations are singular. Detection of this singularity
is somewhat more difficult and depends on round-off in each computer system.

A number of alternatives have been presented that avoid the presence of this
singular behaviour. Two simple ones are:
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1. assemble the equations (or just the rotational parts) at points where elements are
co-planar in local coordinates (and delete the 06 = 0 equation); and/or
2. insert an arbitrary stiffness coefficient ky_ at such points only.

This leads in the local coordinates to replacing Eq. (6.28) by
kg.0- =0 (6.29)

which, on transformation, leads to a perfectly well-behaved set of equations from
which, by usual processes, all displacements now including 6;;, are obtained. As 6;
does not affect the stresses and indeed is uncoupled from all equilibrium equations
any value of k,_ similar to values already in Eq. (6.6) can be inserted as an external
stiffness without affecting the result.

These two approaches lead to programming complexity (as a decision on the co-planar
nature is necessary) and an alternative is to modify the formulation so that the rotational
parameters arise more naturally and have a real physical significance. This has been a
topic of much study44_56 and the 6. parameter introduced in this way is commonly
called a drilling degree of freedom, on account of its action to the surface of the shell.
An early application considering the rotation as an additional degree of freedom in
plane analysis is contained in reference 14. In reference 8 a set of rotational stiffness co-
efficients was used in a general shell program for all elements whether co-planar or not.
These were defined such that in local coordinates overall equilibrium is not disturbed.
This may be accomplished by adding to the formulation for each element the term

I =11 + Lz a, Er" (0. — §.)*dQ (6.30)
in which the parameter a,, is a fictitious elastic parameter and - is a mean rotation of
each element which permits the element to satisfy local equilibrium in a weak sense.
The above is a generalization of that proposed in reference 8 where the value of 7 is
unity in the scaling value . Since the term will lead to a stiffness that will be in terms
of rotation parameters the scaling indicated above permits values proportional to
those generated by the bending rotations — namely, proportional to ¢ cubed. In
numerical experiments this scaling leads to less sensitivity in the choice of «,. For a
triangular element in which a linear interpolation is used for #. minimization with
respect to 6; leads to the form

. | 1 —05 —0.5
My o =zconEMA| =05 1 05 (6.31)
Mfm —0.5 -0.5 1

where «,, is yet to be specified. This additional stiffness does in fact affect the results
where nodes are not co-planar and indeed represents an approximation; however,
effects of varying «, over fairly wide limits are quite small in many applications.
For instance in Table 6.1 a set of displacements of an arch dam analysed in reference
8 is given for various values of «;. For practical purposes extremely small values of «,
are possible, providing a large computer word length is used.’’

The analysis of the spherical test problem proposed by MacNeal and Harter as a
standard test™ is indicated in Fig. 6.5. For this test problem a constant strain trian-
gular membrane together with the discrete Kirchhoff triangular plate bending element
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Table 6.1 Nodal rotation coefficient in dam alnalysis8

o 1.00 0.50 0.10 0.03 0.00

Radial displacement (mm) 61.13

is combined with the rotational treatment. The results for regular meshes are shown in
Table 6.2 for several values of «; and mesh subdivisions.

The above development, while quite easy to implement, retains the original form of
the membrane interpolations. For triangular elements with corner nodes only, the
membrane form utilizes linear displacement fields that yield only constant strain
terms. Most bending elements discussed in Chapters 4 and 5 have bending strains
with higher than constant terms. Consequently, the membrane error terms will dom-
inate the behaviour of many shell problem solutions. In order to improve the situation
it is desirable to increase the order of interpolation. Using conventional interpolations
this implies the introduction of additional nodes on each element (e.g. see Chapter 8§
of Volume 1); however, by utilizing a drill parameter these interpolations can be
transformed to a form that permits a 6 degree-of-freedom assembly at each vertex
node. Quadratic interpolations along the edge of an element can be expressed as

U(&) = N;(§)u; + N;(§)u; + N (&) Auy (6.32)

where u; are nodal displacements (i;, v;) at an end of the edge (vertex), similarly u; is the
other end, and Au, are hierarchical displacements at the centre of the edge (Fig. 6.6).

Free edge

Symmetry

Symmetry plane
plane

Unit load

Unit load !

AN y
Symmetry plane

X R=10, t=0.04
E=6.825x10". v=0.3

Fig. 6.5 Spherical shell test problem.*®



228 Shells as an assembly of flat elements

Table 6.2 Sphere problem: radial displacement at load

Mesh a3 value
10.0 1.00 0.100 0.010 0.001 0.000
4x4 0.0639 0.0919 0.0972 0.0979 0.0980 0.0980
8x8 0.0897 0.0940 0.0945 0.0946 0.0946 0.0946
16 x 16 0.0926 0.0929 0.0929 0.0929 0.0930 0.0930

Fig. 6.6 Construction of in-plane interpolations with drilling parameters.

0
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The centre displacement parameters may be expressed in terms of normal (Au,) and
tangential (Aii,) components as

Au, = Ai,n + Ai,t (6.33)

where n is a unit outward normal and t is a unit tangential vector to the edge:

cosv —sinv
n= { ) } and t= { } (6.34)
sin v cosv
where v is the angle that the normal makes with the ¥ axis. The normal displacement

component may be expressed in terms of drilling parameters at each end of the edge
(assuming a quadratic expansion).***? Accordingly,

in which /; is the length of the ij side. This construction produces an interpolation on
each edge given by

(&) = N;(©)1; + N;(©)1; + Ni(€) [§ 1 (05 — 0=) + Adayt] (6.36)

The reader will undoubtedly observe the similarity here with the process used to
develop linked interpolation for the bending element (see Sec. 5.7).

The above interpolation may be further simplified by constraining the A,
parameters to zero. We note, however, that these terms are beneficial in a three-
node triangular element. If a common sign convention is used for the hierarchical
tangential displacement at each edge, this tangential component maintains compat-
ibility of displacement even in the presence of a kink between adjacent elements.
For example, an appropriate sign convention can be accomplished by directing a
positive component in the direction in which the end (vertex) node numbers increase.
The above structure for the in-plane displacement interpolations may be used for
either an irreducible or a mixed element model and generates stiffness coefficients
that include terms for the 6. parameters as well as those for # and . It is apparent,
however, that the element generated in this manner must be singular (i.e. has spurious
zero-energy modes) since for equal values of the end rotation the interpolation is
independent of the 6 parameters. Moreover, when used in non-flat shell applications
the element is not free of local equilibrium errors. This later defect may be removed by
using the procedure identified above in Eq. (6.30), and results for a quadrilateral
element generated according to this scheme are given by Jetteur™ and Taylor.**

A structure of the plane stress problem which includes the effects of a drill rotation
field is given by Reissner™ and is extended to finite element applications by Hughes
and Brezzi.’! A variational formulation for the in-plane problem may be stated as
[see Eq. (2.29) in Volume 1]

1
Hd(ﬁa 9577—) = E J

' Ded + J 7 (wyy — 0:) dQ (6.37)
Q

X
Q Y

where 7 is a skew-symmetric stress component and wyg; is the rotational part of the
displacement gradient, which for the Xy plane is given by
_0v Ou

Wi T 55T o (6.38)



230 Shells as an assembly of flat elements

In addition to the terms shown in Eq. (6.37), terms associated with initial stress and
strain as well as boundary and body load must be appended for the general shell
problem as discussed in Chapters 2 and 4 of Volume 1.

A variation of Eq. (6.37) with respect to 7 gives the constraint that the skew-
symmetric part of the displacement gradients is the rotation 6.. Conversely, variation
with respect to 6 gives the result that 7 must vanish. Thus, the equations generated
from Eq. (6.37) are those of the conventional membrane but include the rotation
field. A penalty form of the above equations suitable for finite element applications
may be constructed by modifying Eq. (6.37) to

_ 1
Hd:Hd_J

= 72 dQ (6.39)
Qo

where «, is a penalty number.

Itis important to use this mixed representation of the problem with the mixed patch
test to construct viable finite element models. Use of constant 7 and isoparametric
interpolation of 6 in each element together with the interpolations for the displace-
ment approximation given by Eq. (6.36) lead to good triangular and quadrilateral
membrane elements. Applications to shell solutions using this form are given by
Ibrahimbegovic er al.® Also the solution for a standard barrel vault problem is
contained in Sec. 6.8.

6.6 Elements with mid-side slope connections only

Many of the difficulties encountered with the nodal assembly in global coordinates
disappear if the element is so constructed as to require only the continuity of
displacements u, v, and w at the corner nodes, with continuity of the normal slope
being imposed along the element sides. Clearly, the corner assembly is now simple
and the introduction of the sixth nodal variable is unnecessary. As the normal
slope rotation along the sides is the same both in local and in global coordinates its
transformation there is unnecessary — although again it is necessary to have a
unique definition of parameters for the adjacent elements.

Elements of this type arise naturally in hybrid forms (see Chapter 13 of Volume 1)
and we have already referred to a plate bending element of a suitable type in Sec. 4.6.
This element of the simplest possible kind has been used in shell problems by Dawe®
with some success. A considerably more sophisticated and complex element of such
type is derived by Irons®® and named ‘semi-loof’. This element is briefly mentioned
in Chapter 4 and although its derivation is far from simple it performs well in
many situations.

6.7 Choice of element

Numerous membrane and bending element formulations are now available, and, in
both, conformity is achievable in flat assemblies. Clearly, if the elements are not
co-planar conformity will, in general, be violated and only approached in the limit
as smooth shell conditions are reached.
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It would appear consistent to use expansions of similar accuracy in both the mem-
brane and bending approximations but much depends on which action is dominant.
For thin shells, the simplest triangular element would thus appear to be one with a
linear in-plane displacement field and a quadratic bending displacement — thus
approximating the stresses as constants in membrane and in bending actions. Such
an element is used by Dawe® but gives rather marginal (though convergent) results.

In the examples shown we use the following elements which give quite adequate
performance.

Element A: this is a mixed rectangular membrane with four corner nodes (Sec. 11.4.4
of Volume 1) combined with the non-conforming bending rectangle with four
corner nodes (Sec.4.3). This was first used in references 9 and 10.

Element B: this is a constant strain triangle with three nodes (the basic element of
Chapter 4 of Volume 1) combined with the incompatible bending triangle with
9 degrees of freedom (Sec. 4.5). Use of this in the shell context is given in
references 8 and 60.

Element C: in this a more consistent linear strain triangle with six nodes is combined
with a 12 degree-of-freedom bending triangle using shape function smoothing.
This element has been introduced by Razzaque.®!

Element D: this is a four-node quadrilateral with drilling degrees of freedom
[Eq. (6.36) with A, constrained to zero] combined with a discrete Kirchhoff
quadrilateral.*%?

6.8 Practical examples

The first example given here is that for the solution of an arch dam shell. The
simple geometrical configuration, shown in Fig. 6.7, was taken for this particular prob-
lem as results of model experiments and alternative numerical approaches were available.

A division based on rectangular elements (type A) was used as the simple
cylindrical shape permitted this, although a rather crude approximation for the
fixed foundation had to be used.

Water load as discrete point loads

30m

Nodal loads

Actual foundation line

Coarse mesh Fine mesh

Fig. 6.7 An arch dam as an assembly of rectangular elements.
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30 A=

25 k

Height (m)
o
T

10 -

0 ! ! !
0 2 4 6 8
Deflections (mm)

—{— Finite element solution (coarse)

—— Finite element solution (fine)

------ Trial load solution (USBR)
(Poisson's ratio v = 0.15)

Fig. 6.8 Arch dam of Fig. 6.7: horizontal deflections on centre-line.

Two sizes of division into elements are used, and the results given in Figs 6.8 and
6.9 for deflections and stresses on the centre-line section show that little change
occurred by the use of the finer mesh. This indicates that the convergence of both
the physical approximation to the true shape by flat elements and of the mathematical
approximation involved in the finite element formulation is more than adequate. For
comparison, stresses and deflection obtained using the USBR trial load solution
(another approximate method) are also shown.

A large number of examples have been computed by Parekh® using the triangular,
non-conforming element (type B), and indeed show for equal division a general
improvement over the conforming triangular version presented by Clough and
Johnson.” Some examples of such analyses are now shown.

A doubly curved arch dam was similarly analysed using the triangular flat element
(type B) representation. The results show an even better approximation.8
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Practical examples

Downstream face

2 30 —O Finite element solution (coarse)
] o5 —<— Finite element solution (fine)
Upstream face ;{ X [T e Trial load solution (USBR)
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Vertical stresses on crown section (+ tension) (kg/cm?)

Fig. 6.9 Arch dam of Fig. 6.7: vertical stresses on centre-line.

6.8.1 Cooling tower

This problem of a general axisymmetric shape could be more efficiently dealt with by
the axisymmetric formulations to be presented in Chapters 7 and 9. However, here
this example is used as a general illustration of the accuracy attainable. The answers
against which the numerical solution is compared have been derived by Albasiny and

|
©
©

(b)

Pressure coefficients
o
'

&

87.111t

1601t

270 ft

Actual
----- Assumed

1 I I |
0 30 60 90 120 150 180
6 (deg)

Fig. 6.10 Cooling tower: geometry and pressure load variation about circumference.
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5at12ft

9at25ft

12 at 15°

Fig. 6.11 Cooling tower of Fig. 6.10: mesh subdivisions.

Martin.®* Figures 6.10 to 6.12 show the geometry of the mesh used and some results
for a Sinch and a 7inch thick shell. Unsymmetric wind loading is used here.

6.8.2 Barrel vault

This typical shell used in many civil engineering applications is solved using analytical
methods by Scordelis and Lo* and Scordelis.> The barrel is supported on rigid dia-
phragms and is loaded by its own weight. Figures 6.13 and 6.14 show some comparative
answers, obtained by elements of type B, C and D. Elements of type C are obviously
more accurate, involving more degrees of freedom, and with a mesh of 6 x 6 elements
the results are almost indistinguishable from analytical ones. This problem has become
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1250

100 5in shell
— Finite element
o ---- Albasiny and Martin®®
— ~100 -
N \s~‘ N2
—200 \\
-300
—250 0 250 500 750 1000
Ib/ft
(a)
100
~ '\
7 in shell " )'/'
% -100 o
5in shell
-200 e ‘
/ — Finite element
---- Albasiny and Martin®®
-300
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
ft
(b)
100
ol /
N\ M M,
S -100 N
7 in shell \\ "
—200 T Fiite element \/ \ !
---- Albasiny and y
Martin®3
-300
30 20 10 0 10 0
Ib ft/ft
(c)

Fig. 6.12 Cooling tower of Fig. 6.10: (a) membrane forces at § = 0°; Ny, tangential; N, meridional; (b) radial
displacements at 6 = 0°; () moments at § = 0°; M, tangential; M, meridional.
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yv

X, U
E=3x10%k/in?
v=0
g=0.09 k/ft?
Supported by Free edge
rigid diaphram
u=0
w=0
(a)
| — Analytical
. ‘ A 8x12 Mesh EI.B
m 0 20 o 12x18 Mesh
' 3 o 3x3MeshElLDc
N 0 m 8x12Mesh EL.D
0.1
w (ft)
0.2
— 0.3
(b)
| .
| 20 40
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i -0.005
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-0.010
— -0.015
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Fig. 6.13 Barrel (cylindrical) vault: flat element model results. (a) Barrel vault geometry and properties;
(b) vertical displacement of centre section; (c) longitudinal displacement of support.
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ft kip/ft

M, (ft kip/t)

(b)

Fig. 6.14 Barrelvault of Fig. 6.13. (a) M, transverse; M,, longitudinal; centre-line moments; (b) M;,, twisting
moment at support.

a classic on which various shell elements are compared and we shall return to it in
Chapter 8. It is worthwhile remarking that only a few, second-order, curved elements
give superior results to those presented here with a flat element approximation.

6.8.3 Folded plate structure

As no analytical solution of this problem is known, comparison is made with a set of
experimental results obtained by Mark and Riesa.®
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This example presents a problem in which actual flat finite element representation is
physically exact. Also a frame stiffness is included by suitable superposition of beam
elements — thus illustrating also the versatility and ease by which different types of
elements may be used in a single analysis.

Figures 6.15 and 6.16 show the results using elements of type B. Similar applica-
tions are of considerable importance in the analysis of box-type bridge structures, etc.

Scale (Ib) Scale (107%in)
0 0.1 02 0 100 200
I E— I

Displacements

y=0L/4=3.81in

Key to results
----- experimental
finite element

]

¢
! 3.81 7.62
y=0 | / (a)
,r\ ________________ 0.1in
Crown |
Edge !
b
k\ . g’( )
N 3f1 1011 %_
1 §~~ "' _Q
| 1 o
i 3.81 7.62
! / -------- (C)

; 0.1in

Fig. 6.16 Folded plate of Fig. 6.15; moments and displacements on centre section. (a) Vertical displacements
along the crown; (b) longitudinal moments along the crown; (c) horizontal displacements along edge.
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Axisymmetric shells

7.1 Introduction

The problem of axisymmetric shells is of sufficient practical importance to include
in this chapter special methods dealing with their solution. While the general
method described in the previous chapter is obviously applicable here, it will be
found that considerable simplification can be achieved if account is taken of
axial symmetry of the structure. In particular, if both the shell and the loading
are axisymmetric it will be found that the clements become ‘one-dimensional’.
This is the simplest type of element, to which little attention was given in earlier
chapters.

The first approach to the finite element solution of axisymmetric shells was
presented by Grafton and Strome.' In this, the elements are simple conical frustra
and a direct approach via displacement functions is used. Refinements in the
derivation of the element stiffness are presented in Popov es al’ and in Jones
and Strome.” An extension to the case of unsymmetrical loads, which was
suggested in Grafton and Strome, is elaborated in Percy et al.* and others.>®

Later, much work was accomplished to extend the process to curved elements and
indeed to refine the approximations involved. The literature on the subject is
considerable, no doubt promoted by the interest in aerospace structures, and a
complete bibliography is here impractical. References 7—15 show how curvilinear
coordinates of various kinds can be introduced to the analysis, and references 9
and 14 discuss the use of additional nodeless degrees of freedom in improving
accuracy. ‘Mixed’ formulations (Chapter 11 of Volume 1) have found here some
use.'® Early work on the subject is reviewed comprehensively by Gallagher'”!'® and
Stricklin."

In axisymmetric shells, in common with all other shells, both bending and ‘in-
plane’ or ‘membrane’ forces will occur. These will be specified uniquely in terms
of the generalized ‘strains’, which now involve extensions and changes in curvatures
of the middle surface. If the displacement of each point of the middle surface is
specified, such ‘strains’ and the internal stress resultants, or simply ‘stresses’, can
be determined by formulae available in standard texts dealing with shell
the:ory.zo*22



Straight element

7.2 Straight element

As a simple example of an axisymmetric shell subjected to axisymmetric loading we
consider the case shown in Figs 7.1 and 7.2 in which the displacement of a point
on the middle surface of the meridian plane at an angle ¢ measured positive from
the x-axis is uniquely determined by two components # and w in the tangential (s)
and normal directions, respectively.

Using the Kirchhoff—-Love assumption (which excludes transverse shear deforma-
tions) and assuming that the angle ¢ does not vary (i.e. elements are straight), the four
strain components are given by*’ %

£ du/ds
_Jeo | ) [acosg—wsing]/r
€= N —dzw/dsz (7.1)
Xo —(dw/ds) cos ¢/r

This results in the four internal stress resultants shown in Fig. 7.1 that are related to
the strains by an elasticity matrix D:

¢ = =Dse (7.2)

For an isotropic shell the elasticity matrix becomes

v 0 0

v 1 0 0
120 0 A/12 vi/12
0 0 vir/12 /12

1

Fig. 7.1 Axisymmetric shell, loading, displacements, and stress resultants; shell represented as a stack of
conical frustra.
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Fig. 7.2 An element of an axisymmetric shell.

the upper part being a plane stress and the lower a bending stiffness matrix with shear
terms omitted as ‘thin’ conditions are assumed.

7.2.1 Element characteristics — axisymmetrical loads

Let the shell be divided by nodal circles into a series of conical frustra, as shown in
Fig. 7.2. The nodal displacements at points 1 and 2 for a typical 1-2 element such
as i and j will have to define uniquely the deformations of the element via prescribed
shape functions.

At each node the radial and axial displacements, # and w, and a rotation, 3, will be
used as parameters. From virtual work by edge forces we find that all three compo-
nents are necessary as the shell can carry in-plane forces and bending moments. The
displacements of a node i can thus be defined by three components, the first two being
in global directions r and z,

a; = w; (74)
Bi

The simplest elements with two nodes, i and j, thus possess 6 degrees of freedom,
determined by the element displacements

2t = { :; } (7.5)

The displacements within the element have to be uniquely determined by the nodal
displacements a® and the position s (as shown in Fig. 7.2) and maintain slope and
displacement continuity.

Thus in local (s) coordinates we have

. { f’ } — N(s)a® (7.6)
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Based on the strain—displacement relations (7.1) we observe that «# can be of C type
while w must be of type C;. The simplest approximation takes # varying linearly with
s and w as cubic in s. We shall then have six undetermined constants which can be
determined from nodal values of u, w, and S.

At the node i,

ii; cos¢p sing 0 u;
Wl. = —sin ¢ COS (b 0 w; = Tai (77)
(dw/ds); 0 0 1 Bi

Introducing the interpolations
i = Ni ()i + N3 (&) (7.8)
_ w _ W _ L 5 dw 5 dw
W= N (©)w + N3 (©m +5 [N©O 5 ) +NO( g (79)
2 ds 1 ds 2
where N} are the usual linear interpolations in £ (—1 < €< 1)

N=1(1-¢ and N =1(1+¢
and N} and Nf are the Hermitian interpolations of order 0 and 1 given as (see
Chapter 4, Sec. 4.14)

N =i(2-3¢+€)  and N ={(2+3¢-8)
and
N =t(l-¢-€+¢&) and N =}(-1-£+8+¢)
in which, placing the origin of the meridian coordinate s at the i node,
s=M(OL=1(1+8L

The global coordinates for the conical frustrum may also be expressed by using the
N/ interpolations as

r=N{(€)r +Ni)r

. . (7.10)
z=Ni(§)z1 + N3(§) 2
and used to compute the length L as
L= \/(rz —n)+(z—-=n)
Writing the interpolations as
u;
_[NS0 0 _ < -
u= " 5 w; = Ny, (7.11)
0 N' N i
(dw/ds);

we can now write the global interpolation as

u - - , ,
u= { } =[N;T N,T]a’=Na’ (7.12)
w
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From Eq. (7.12) it is a simple matter to obtain the strain matrix B by use of the
definition Eq. (7.1). This gives

¢=Ba‘= BT B,T]a (7.13)

in which, noting from Eq. (7.7) that u = cos ¢ & — sin ¢ W, we have

dN} /ds 0 0
_ N{ coso/r —N!"sing/r —Nl.ﬂ sing/r
B, = a2 2B 12 (7.14)
0 —d°N;"/ds —d"N//ds
0 —(dNY /ds) cos p/r —(dN?/ds) cos ¢/r
Derivatives are evaluated by using
dv; _2.dN &¢’N; 4 &N,
ds L d¢ ds?>  L? d¢

Now all the ‘ingredients’ required for computing the stiffness matrix (or load, stress,
and initial stress matrices) by standard formulae are known. The integrations
required are carried out over the area, A, of each element, that is, with

d4 =27rds=nrLd¢ (7.15)

with & varying from —1 to 1.
Thus, the stiffness matrix K becomes, in local coordinates,

1
K, :WLJ B! DB, rd¢ (7.16)
—1

On transformation, the stiffness K,,,, of the global matrix is given by
K, = TT KmnT (717)

Once again it is convenient to evaluate the integrals numerically and the form
above is written for Gaussian quadrature (see Table 9.1, Volume 1). Grafton and
Strome' give an explicit formula for the stiffness matrix based on a single average
value of the integrand (one-point Gaussian quadrature) and using a D matrix
corresponding to an orthotropic material. Percy er al.* and Klein® used a seven-
point numerical integration; however, it is generally recommended to use only two-
points to obtain all arrays (especially if inertia forces are added, since one point
then would yield a rank deficient mass matrix).

It should be remembered that if any external line loads or moments are present,
their full circumferential value must be used in the analysis, just as was the case
with axisymmetric solids discussed in Chapter 5 of Volume 1.

7.2.2 Additional enhanced mode

A slight improvement to the above element may be achieved by adding an enhanced
strain mode to the £, component. Here this is achieved by following the procedures



Straight element 249

outlined in Chapter 12 of Volume 1, and we can observe that the necessary condition
not to affect a constant value of N is given by

1
27TJ s§°n>rds=wLJ el de=0 (7.18)
L 1

where aﬁen) denotes the enhanced strain component. A simple mode may thus be
defined as

£
Egen) = ; Qen = Ben Qlen (719)

in which ag, is a parameter to be determined. For the linear elastic case considered
above the mode may be determined from

5 Sz

where

1

Koy =27L J Bey Dy Beyrd€
1

1 (7.21)

G,-:27TLJ [B,, 0 0 0]DB;rd¢
1

Now a partial solution may be performed by means of static condensation? to obtain
the stiffness for assembly

K=K-G'K,'G (7.22)

The effect of the added mode is most apparent in the force resultant N, where solu-
tion oscillations are greatly reduced. This improvement is not needed for the purely
elastic case but is more effective when the material properties are inelastic where the
oscillations can cause errors in behaviour, such as erratic yielding in elasto-plastic
solutions.

7.2.3 Examples and accuracy

In the treatment of axisymmetric shells described here, continuity between the shell
elements is satisfied at all times. For an axisymmetric shell of polygonal meridian
shape, therefore, convergence will always occur.

The problem of the physical approximation to a curved shell by a polygonal shape
is similar to the one discussed in Chapter 6. Intuitively, convergence can be expected,
and indeed numerous examples indicate this.
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When the loading is such as to cause predominantly membrane stresses, discrepan-
cies in bending moment values exist (even with reasonably fine subdivision). Again,
however, these disappear as the size of the subdivisions decreases, particularly if
correct sampling is used (see Chapter 14 of Volume 1). This is necessary to eliminate
the physical approximation involved in representing the shell as a series of conical

frustra.

Figures 7.3 and 7.4 illustrate some typical examples taken from the Grafton and
Strome paper which show quite remarkable accuracy. In each problem it should be
noted that small elements are needed near free edges to capture the ‘boundary

layer’ nature of shell solutions.
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Fig. 7.3 A cylindrical shell solution by finite elements, from Grafton and Strome.'
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Fig. 7.4 A hemispherical shell solution by finite elements, from Grafton and Strome.

7.3 Curved elements

Use of curved elements has already been described in Chapter 9 of Volume 1, in the
context of analyses that involved only first derivatives in the definition of strain. Here
second derivatives exist [see Eq. (7.1)] and some of the theorems of Chapter 8 of

Volume 1 are no longer applicable.

It was previously mentioned that many possible definitions of curved elements have
been proposed and used in the context of axisymmetric shells. The derivation used
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Fig. 7.5 Curved, isoparametric, shell element for axisymmetric problems: (a) parent element; (b) curvilinear
coordinates.

here is one due to Delpak14 and, to use the nomenclature of Chapter 8, Volume 1, is of
the subparametric type.

The basis of curved element definition is one that gives a common tangent between
adjacent elements (or alternatively, a specified tangent direction). This is physically
necessary to avoid ‘kinks’ in the description of a smooth shell.

If a general curved form of a shell of revolution is considered, as shown in Fig. 7.5,
the expressions for strain quoted in Eq. (7.1) have to be modified to take into account
the curvature of the shell in the meridian plane.?*?' These now become

€y du/ds + w/R;
A [L;t fosqbz— W s_in él/r (7.23)
X —d*w/ds” —d(u/R,)/ds
X6 —[(dw/ds + @/ Ry)] cos ¢/ r
In the above the angle ¢ is a function of s, that is,
dr dz .
a—COSQﬁ and afsmqﬁ

R, is the principal radius in the meridian plane, and the second principal curvature
radius Ry is given by

r = Ry sin ¢
The reader can verify that for R, = oo Eq. (7.23) coincides with Eq. (7.1).

7.3.1 Shape functions for a curved element

We shall now consider the 1-2 element to be curved as shown in Fig.7.5(b), where the
coordinate is in ‘parent’ form (—1 < £ < 1) as shown in Fig. 7.5(a). The coordinates
and the unknowns are ‘mapped’ in the manner of Chapter 9 of Volume 1. As we wish
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to interpolate a quantity with slope continuity we can write for a typical function

2
, dy -
= N, + NP [==)| =N 7.24
Y ;{ (O + ,(df)} 7 (7.24)
where again the order 1 Hermitian interpolations have been used. We can now simulta-
neously use these functions to describe variations of the global displacements u and w as”

2

I

i=1
. (7.25)

: g (dw
o W B
vy e ()
and of the coordinates r and z which define the shell (mid-surface). Indeed, if the
thickness of the element is also variable the same interpolation could be applied to
it. Such an element would then be isoparametric (see Chapter 9 of Volume 1). Accord-
ingly, we can define the geometry as
2

=3 rien w7 ()]

i=1
) (7.26)

W dZ
==Y ()
i=1
and, provided the nodal values in the above can be specified, a one-to-one relation
between £ and the position on the curved element surface is defined [Fig. 7.5(b)].
While specification of r; and z; is obvious, at the ends only the slope

cotg; = — (g:) (7.27)

is defined. The specification to be adopted with regard to the derivatives occurring in
Eq. (7.26) depends on the scaling of & along the tangent length s. Only the ratio
(&) Lo -
dz);  (dz/dg);
is unambiguously specified. Thus (dr/d€); or (dz/d€); can be given an arbitrary value.
Here, however, practical considerations intervene as with the wrong choice a very
uneven relationship between s and £ will occur. Indeed, with an unsuitable choice
the shape of the curve can depart from the smooth one illustrated and loop between
the end values.
To achieve a reasonably uniform spacing it suffices for well-behaved surfaces to
approximate
dI’NAI’ ry —r; dZNAZ Zy — I
AN & T AT 2

(7.29)

* One immediate difference will be observed from that of the previous formulation. Now both displacement
components vary in a cubic manner along an element while previously a linear variation of the tangential
displacement was permitted. This additional degree of freedom does not, however, introduce excessive
constraints provided the shell thickness is itself continuous.
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using whichever is largest and noting that the whole range of ¢ is 2 between the nodal
points.

7.3.2 Strain expressions and properties of curved elements

The variation of global displacements are specified by Eq. (7.25) while the strains are
described in locally directed displacements in Eq. (7.23). Some transformations are
therefore necessary before the strains can be determined.

We can express the locally directed displacements # and w in terms of the global
displacements by using Eq. (7.7), that is,

{”}:[“’W Siw]{”}:h (7.30)
w —sing cos¢ | (w

where ¢ is the angle of the tangent to the curve and the r axis (Fig. 7.5). We note that
this transformation may be expressed in terms of the £ coordinate using Eqs (7.27)
and (7.28) and the interpolations for » and z. With this transformation the continuity
of displacement between adjacent elements is achieved by matching the global nodal
displacements «; and w;. However, in the development for the conical element we have
specified continuity of rotation of the cross-section only. Here we shall allow usually
the continuity of both s derivatives in displacements. Thus, the parameters

du and dw
ds ds
will be given common values at nodes. As
du ds _ du and dw ds _ dw (7.31)

dsde de " ds d¢  de

ds  [(dr 2+ dz\?

d¢ d¢ d¢
no difficulty exists in substituting these new variables in Eqs (7.25) and (7.30) which
now take the form

a=N()a* with a,=[w; w (du/ds); (dw/ds);]" (7.32)
The form of the 2 x 4 shape function submatrices N; can now be explicitly deter-
mined by using the above transformations in Eq. (7.25).14 We note that the meridian

radius of curvature R can be calculated explicitly from the mapped, parametric, form
of the element by using

and

o l@r/dey + (@z/dg)’)” (2.33)
" (dr/dg)(d’z/dg) — (dz/dg)(dr/de?) '
in which all the derivatives are directly determined from expression (7.26).
If shells that branch or in which abrupt thickness changes occur are to be treated, the
nodal parameters specified in Eq. (7.32) are not satisfactory. It is better to rewrite these as

a,=[w, w B (di/ds);]" (7.34)
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where ;, equal to (dw/ds);, is the nodal rotation, and to connect only the first three
parameters. The fourth is now an unconnected element parameter with respect to
which, however, the usual treatment is still carried out. Transformations needed in
the above are implied in Eq. (7.7).

In the derivation of the B matrix expressions which define the strains, both first and
second derivatives with respect to s occur, as seen in the definition of Eq. (7.23). If we
observe that the derivatives can be obtained by the simple (chain) rules already
implied in Eq. (7.31), for any function F we can write

dF dF ds  d*F d&°F (ds\ dF [d%s
D ) i (il B (i (7.35)
d¢ ds d¢ d¢? ds? \d¢ ds \ d&?
and all the expressions of B can be found.

Finally, the stiffness matrix is obtained in a similar way as in Eq. (7.16), changing
the variable

_ds
e

and integrating & within the limits —1 and +1. Once again the quantities contained in
the integral expressions prohibit exact integration, and numerical quadrature must be
used. As this is carried out in one coordinate only it is not very time-consuming and
an adequate number of Gauss points can be used to determine the stiffness (generally
three points suffice). Initial stress and other load matrices are similarly obtained.

The particular isoparametric formulation presented in summary form here differs
somewhat from the alternatives of references 7, 8, 13 and 15 and has the advantage
that, because of its isoparametric form, rigid body displacement modes and indeed
the states of constant first derivatives are available. Proof of this is similar to that
contained in Sec. 9.5 of Volume 1. The fact that the forms given in the alternative
formulations have strain under rigid body nodal displacements may not be serious
in some applications, as discussed by Haisler and Stricklin.>* However, in some
modes of non-axisymmetric loads (see Chapter 9) this incompleteness may be a
serious drawback and may indeed lead to very wrong results.

Constant states of curvature cannot be obtained for a finite element of any kind
described here and indeed are not physically possible. When the size of the element
decreases it will be found that such arbitrary constant curvature states are available
in the limit (see Sec. 10.10 in Volume 1).

ds d¢ (7.36)

7.3.3 Additional nodeless variables

As in the straight frustrum element, addition of nodeless (enhanced) variables in the
analysis of axisymmetric shells is particularly valuable when large curved elements are
capable of reproducing with good accuracy the geometric shapes. Thus an addition of
a set of internal, hierarchical, element variables

> NjAg (7.37)

Jj=1
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Fig. 7.6 Internal shape functions for a linear element.

to the definition of the normal displacement defined in Eq. (7.6) or Eq. (7.25), in
which Ag; is a set of internal parameters and ]\7] is a set of functions having zero
values and zero first derivatives at the nodal points, allows considerable improvement
in representation of the displacements to be achieved without violating any of the
convergence requirements (see Chapter 2 of Volume 1). For tangential displacements
the requirement of zero first derivatives at nodes could be omitted. Webster also uses
such additional functions in the context of straight elements.” In transient situations
where these modes affect the mass matrix one can also use these functions as a basis
for developing enhanced strain modes (see Sec. 7.2.3 and Chapters 11 and 12 of
Volume 1) since these by definition do not influence the assumed displacement field
and, hence, the mass and surface loading terms.

Whether the element is in fact straight or curved does not matter and indeed we can
supplement the definitions of displacements contained in Eq. (7.25) by Eq. (7.37) for
each of the components. If this is done only in the displacement definition and not in
the coordinate definition [Eq. (7.26)] the element becomes now of the category of
subparametric.” As proved in Chapter 9 of Volume 1, the same advantages are
retained as in isoparametric forms.

The question as to the expression to be used for additional, internal shape func-
tions is of some importance though the choice is wide. While it is no longer neces-
sary to use polynomial representation, Delpak does so and uses a special form of
Légendre polynomial (hierarchical functions). The general shapes are shown in
Fig. 7.6.

*While it would obviously be possible to include the new shape function in the element coordinate
definition, little practical advantage would be gained as a cubic represents realistic shapes adequately.
Further, the development would then require ‘fitting’ the «; for coordinates to the shape, complicating
even further the development of derivatives.
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Fig. 7.7 Spherical dome under uniform pressure.

A series of examples shown in Figs 7.7-7.9 illustrate the applications of the
isoparametric curvilinear element of the previous section with additional internal
parameters.

In Fig. 7.7 a spherical dome with clamped edges is analysed and compared with
analytical results of reference 21. Figures 7.8 and 7.9 show, respectively, more com-
plex examples. In the first a torus analysis is made and compared with alternative
finite element and analytical results.'>!32°~7 The second case is one where branching

occurs, and here alternative analytical results are given by Kraus.”®
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Independent slope—displacement interpolation with penalty functions

7.4 Independent slope—displacement interpolation with
penalty functions (thick or thin shell formulations)

In Chapter 5 we discussed the use of independent slope and displacement interpola-
tion in the context of beams and plates. Continuity was assured by the introduction of
the shear force as an independent mixed variable which was defined within each
element. The elimination of the shear variable led to a penalty-type formulation in
which the shear rigidity played the role of the penalty parameter. The equivalence
of the number of parameters used in defining the shear variation and the number
of integration points used in evaluating the penalty terms was demonstrated there
(and also in Chapter 11 of Volume 1) in special cases, and this justified the success
of reduced integration methods. This equivalence is not exact in the case of the
axisymmetric problem in which the radius, r, enters the integrals, and hence slightly
different results can be expected from the use of the mixed form and simple use of
reduced integration. The differences become greatest near the axis of rotation and
disappear completely when r — oo where the axisymmetric form results in an
equivalent beam (or cylindrical bending plate) element.

Although in general the use of the mixed form yields a superior result, for simplicity
we shall here derive only the reduced integration form, leaving the former to the
reader as an exercise accomplished following the rules of Chapter 5.

In what follows we shall develop in detail the simplest possible element of this class.
This is a direct descendant of the linear beam and plate elements.”>* (We note, how-
ever, that the plate element formulated in this way has singular modes and can on
occasion give completely erroneous results; no such deficiency is present in the
beam or axisymmetric shell.)

Consider the strain expressions of Eq. (7.1) for a straight element. When using these
the need for C; continuity was implied by the second derivative of w existing there. If
now we use

dw
i 16} (7.38)
the strain expression becomes
Es du/ds
e Jeo | _ [ii cosp — wsin@/r (7.39)
Xs —dp/ds
X6 —f cos p/r

As 3 can vary independently, a constraint has to be imposed:
dii
C(w, 8) = d%: —B=0 (7.40)

This can be done by using the energy functional with a penalty multiplier «. We can
thus write

dw

2
H:wJ sTDsrds—f—wJ a(— )rderHext (7.41)
L L ds
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262  Axisymmetric shells

where 1, is a potential for boundary and loading terms and € and D are defined as in
Eq. (7.3). Immediately, o can be identified as the shear rigidity:

a=krGt where for a homogeneous shell k=5/6 (7.42)

The penalty functional (7.41) can be identified on purely physical grounds.
Washizu?? quotes this on pages 199-201, and the general theory indeed follows
that earlier suggested by Naghdi*® for shells with shear deformation.

With first derivatives occurring in the energy expression only C, continuity is now
required for the interpolation of u, w, and 3, and in place of Eqs (7.6)—(7.12) we can
write directly

u
2
=< w ZZ;N[(QTW (7.43)
B

az‘T = [”i Wi ﬁi]

where for N;(£) we can use any of the one-dimensional C, interpolations in Chapter 8
of Volume 1. Once again, isoparametric transformation could be used for curvilinear
elements with strains defined by Eq. (7.23), and a formulation that we shall discuss in
Chapter 8 is but an alternative to this process. If linear elements are used, we can write
the expression without consequent use of isoparametric transformation. Indeed, we
can replace the interpolations in Eq. (7.8) and now simply use

u=Ni(§u; + Nao(§u,
w= N (§)w; + No(§) wy (7.44)
B = Ni(&)B1 + N2 (§) B>

and evaluate the integrals arising from expression (7.41) at one Gauss point, which is
sufficient to maintain convergence and yet here does not give a singularity.

This extremely simple form will, of course, give very poor results with exact
integration, even for thick shells, but now with reduced integration shows excellent
performance. In Figs 7.7-7.9 we superpose results obtained with this simple, straight
element, and the results speak for themselves.

For other examples the reader can consult reference 25, but in Fig. 7.10 we show a
very simple example of a bending of a circular plate with use of different numbers of
equal elements. This purely bending problem shows the type of results and conver-
gence attainable.

Interpreting the single integrating point as a single shear variable and applying
the patch test count of Chapter 5, the reader can verify that this simple formulation
passes the test in assemblies of two or more elements. In a similar way it can be
verified that a quadratic interpolation of displacements and the use of two quadrature
points (or a linear shear force) also will result in a robust element of excellent
performance.

One final word of caution when the element is used in transient analyses is in
order. Here it is necessary to compute a mass matrix which can be deduced from
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Fig. 7.10 Bending of a circular plate under uniform load; convergence study.

the term

3
.

5Hm:27"J {6uplii+§wmw+6ﬂp12,6’ rds (7.45)

L

Evaluation of this integral with a single quadrature point will lead to a rank deficient
mass matrix, which when used with any time stepping scheme can lead to large
numerical errors (generally after many time steps have been computed). Accordingly,
it is necessary to compute the mass matrix with at least two quadrature points (nodal
quadrature giving immediately a diagonal ‘lumped’ mass).
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Shells as a special case of
three-dimensional analysis —
Reissner—Mindlin assumptions

8.1 Introduction

In the analysis of solids the use of isoparametric, curved two- and three-dimensional
elements is particularly effective, as illustrated in Chapters 1 and 3 and presented in
Chapters 9 and 10 of Volume 1. It seems obvious that use of such elements in the
analysis of curved shells could be made directly simply by reducing their dimension
in the thickness direction as shown in Fig. 8.1. Indeed, in an axisymmetric
situation such an application is illustrated in the example of Fig. 9.25 of Volume 1.
With a straightforward use of the three-dimensional concept, however, certain
difficulties will be encountered.

In the first place the retention of 3 displacement degrees of freedom at each node
leads to large stiffness coefficients from strains in the shell thickness direction. This
presents numerical problems and may lead to ill-conditioned equations when the
shell thickness becomes small compared with other dimensions of the element.

The second factor is that of economy. The use of several nodes across the shell
thickness ignores the well-known fact that even for thick shells the ‘normals’ to the
mid-surface remain practically straight after deformation. Thus an unnecessarily
high number of degrees of freedom has to be carried, involving penalties of computer
time.

In this chapter we present specialized formulations which overcome both of these
difficulties. The constraint of straight ‘normals’ is introduced to improve economy
and the strain energy corresponding to the stress perpendicular to the mid-surface
is ignored to improve numerical conditioning.!~* With these modifications an efficient
tool for analysing curved thick shells becomes available. The accuracy and wide range
of applicability of the approach is demonstrated in several examples.

8.2 Shell element with displacement and rotation
parameters

The reader will note that the two constraints introduced correspond precisely to the so-
called Reissner—Mindlin assumptions already discussed in Chapter 5 to describe the
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Fig. 8.1 Curved, isoparametric hexahedra in a direct approximation to a curved shell.

behaviour of thick plates. The omission of the third constraint associated with the thin
plate theory (normals remaining normal to the mid-surface after deformation) permits
the shell to experience transverse shear deformations — an important feature of thick
shell situations.

The formulation presented here leads to additional complications compared
with the straightforward use of a three-dimensional element. The eclements
developed here are in essence an alternative to the processes discussed in Chapter
5, for which an independent interpolation of slopes and displacement are used
with a penalty function imposition of the continuity requirements. The use of
reduced integration is useful if thin shells are to be dealt with — and, indeed, it
was in this context that this procedure was first discovered.*”’ Again the same
restrictions for robust behaviour as those discussed in Chapter 5 become applicable
and generally elements that perform well in plate situations will do well in
shells.
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268 Shells as a special case
8.2.1 Geometric definition of an element

Consider a typical shell element illustrated in Fig. 8.2. The external faces of the
element are curved, while the sections across the thickness are generated by straight
lines. Pairs of points, i, and ipom, €ach with given cartesian coordinates, prescribe
the shape of the element.

Let &, n be the two curvilinear coordinates in the mid-surface of the shell and let ¢ be
a linear coordinate in the thickness direction. If, further, we assume that &, n, ¢ vary
between —1 and 1 on the respective faces of the element we can write a relationship
between the cartesian coordinates of any point of the shell and the curvilinear
coordinates in the form

X 1 _A'_C X 1 C X

= . L . i . 1
yo=2oNEm | = g (8.1)
z Zi top Zi ) bottom

Here N,(&,n) is a standard two-dimensional shape function taking a value of unity at
the top and bottom nodes i and zero at all other nodes (Chapter 9 of Volume 1). If the
basic functions N; are derived as ‘shape functions’ of a ‘parent’, two-dimensional

10 O O O O
-1 0 1

Ly L, Ly coordinates

Fig. 8.2 Curved thick shell elements of various types.
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Fig. 8.3 Local and global coordinates.

element, square or triangular® in plan, and are so ‘designed’ that compatibility is
achieved at interfaces, then the curved space clements will fit into each other.
Arbitrary curved shapes of the element can be achieved by using shape functions of
higher order than linear. Indeed, any of the two-dimensional shape functions of
Chapter 8 of Volume 1 can be used here.

The relation between the cartesian and curvilinear coordinates is now established
and it will be found desirable to operate with the curvilinear coordinates as the
basis. It should be noted that often the coordinate direction ( is only approximately
normal to the mid-surface.

It is convenient to rewrite the relationship, Eq. (8.1), in a form specified by the
‘vector’ connecting the upper and lower points (i.e. a vector of length equal to the
shell thiclfmess t) and the mid-surface coordinates. Thus we can rewrite Eq. (8.1) as
(Fig. 8.3)

X X;
y = Z N:i(&n) Vi +%CV35 (8.2)
z Zi ) mid
where
X; X; X; X; X;
Vi g =3 Vi +q Vi and V3 =4y —q Vi (8.3)
Zj Zi ) top Zi ) bottom Zi ) top Zi ) bottom

with V;; defining a vector whose length represents the shell thickness.

* Area coordinates L; would be used in this case in place of &,  as in Chapter 8 of Volume 1.
T For details of vector algebra see Appendix F of Volume 1.
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270 Shells as a special case

For relatively thin shells, it is convenient to replace the vector V;; by a unit vector
v3; in the direction normal to the mid-surface. Now Eq. (8.2) is written simply as

X X
Y= ZNz'(&??) Vi +3 (v
z Z;

mid

where ¢; is the shell thickness at the node i. Construction of a vector normal to the
mid-surface is a simple process (see Sec. 6.4.2).

8.2.2 Displacement field

The displacement field is now specified for the element. As the strains in the direction
normal to the mid-surface will be assumed to be negligible, the displacement through-
out the element will be taken to be uniquely defined by the three cartesian components
of the mid-surface node displacement and two rotations about two orthogonal direc-
tions normal to the nodal vector Vj;. If these two orthogonal directions are denoted
by unit vectors v;; and v,; with corresponding rotations «; and j; (see Fig. 8.3), we can
write, similar to Eq. (8.2) but dropping the subscript ‘mid’ for simplicity,

u U;
v o= ZNI'(&U) v; +%Cli[vli7 —Vzi]{al} (8.4)
w w; !

from which the usual form is readily obtained as

U
e
u a; V;
v p=Na% a°=( : with af = w; (8.5)
W e a
a; i
Bi

where u, v and w are displacements in the directions of the global x, y and z axes.
As an infinity of vector directions normal to a given direction can be generated, a
particular scheme has to be devised to ensure a unigue definition. Some such schemes
were discussed in Chapter 6. Here another unique alternative will be given,>* but
other possibilities are open.’
Here Vj3; is the vector to which a normal direction is to be constructed. A coordinate
vector in a Cartesian system may be defined by

Xx=xi+yj+zk (8.6)

in which i, j and k are three (orthogonal) base vectors. To find the first normal vector
we find the minimum component of V3; and construct a vector cross-product with the
unit vector in this direction to define V,;. For example if the x component of V3; is the
smallest one we construct

Vli =ix V3i (87)



Shell element with displacement and rotation parameters

where
i=[1 0 0]"

1s the form of the unit vector in the x direction. Now

V,:
v1i=|V:{| where V| =1/VIVy, (8.8)

defines the first unit vector.
The second normal vector may now be computed from

Vo=V xVy; (8.9)

and normalized using the form in Eq. (8.8). We have thus three local, orthogonal axes
defined by unit vectors

Vi, Vo, and V3; (810)

Once again if N; are C, functions then displacement compatibility is maintained
between adjacent elements.

The element coordinate definition is now given by the relation Eq. (8.2) and has
more degrees of freedom than the definition of the displacements. The element is
therefore of the ‘superparametric’ kind (see Chapter 9 of Volume 1) and the constant
strain criteria are not automatically satisfied. Nevertheless, it will be seen from the
definition of strain components involved that both rigid body motions and constant
strain conditions are available.

Physically it has been assumed in the definition of Eq. (8.4) that no strains occur in
the ‘thickness’ direction . While this direction is not always exactly normal to the
mid-surface it still represents a good approximation of one of the usual shell assump-
tions.

At each mid-surface node i of Fig 8.3 we now have the 5 basic degrees-of-freedom,
and the connection of elements will follow precisely the patterns described in Chapter
6 (Secs 6.3 and 6.4).

8.2.3 Definition of strains and stresses

To derive the properties of a finite element the essential strains and stresses need first
to be defined. The components in directions of orthogonal axes related to the surface ¢
(constant) are essential if account is to be taken of the basic shell assumptions. Thus,
if at any point in this surface we erect a normal Z with two other orthogonal axes X and
y tangential to it (Fig. 8.3), the strain components of interest are given simply by the
three-dimensional relationships in Chapter 6 of Volume 1:

€x U
& O
Viz U+ Wy
Vzx Wyt
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272 Shells as a special case

with the strain in direction Z neglected so as to be consistent with the usual shell
assumptions. It must be noted that in general none of these directions coincide
with those of the curvilinear coordinates &, 7, ¢, although X, y are in the &y plane
(¢ = constant).”

The stresses corresponding to these strains are defined by a matrix ¢ and for elastic
behaviour are related to the usual elasticity matrix D. Thus

Ql
|
N

v ¢ =D(E—&) + 6 (8.12)

where g, and 6, represent any ‘initial’ strains and stresses, respectively.

The 5 x 5 matrix D can now include any anisotropic properties and indeed may be
prescribed as a function of ¢ if sandwich or laminated construction is used. For the
present we shall define it only for an isotropic material. Here

1 v 0 0 0
v 1 0 0 0
]_)zlij2 0 0 (I—-v))/2 0 0 (8.13)
0 0 k(1 —v)/2 0
00 0 0 k(1 —v)/2

in which E and v are Young’s modulus and Poisson’s ratio, respectively. The factor x
included in the last two shear terms is taken as 5/6 and its purpose is to improve the
shear displacement approximations (see Chapter 4). From the displacement definition
it will be seen that the shear distribution is approximately constant through the thick-
ness, whereas in reality the shear distribution for elastic behaviour is approximately
parabolic. The value k = 5/6 is the ratio of relevant strain energies.

It is important to note that this matrix is not defined by deleting appropriate terms
from the equivalent three-dimensional stress matrix. It must be derived by substitut-
ing o> = 0 into Eqs (6.13) and (6.14) in Volume 1 and a suitable elimination so that
this important shell assumption is satisfied. This is similar to the procedure for
deriving plane stress behaviour in two-dimensional analyses.

8.2.4 Element properties and necessary transformations

The stiffness matrix — and indeed all other ‘element’ property matrices — involve
integrals over the volume of the element, which are quite generally of the form

J Hdxdyd:z (8.14)
ve

* Indeed, these directions will only approximately agree with the nodal directions vy;, v,; previously derived,
as in general the vector vs; is only approximately normal to the mid-surface.
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where the matrix H is a function of the coordinates. For instance, in the stiffness
matrix

H=B"DB (8.15)
and with the usual definition of Chapter 2 of Volume 1,
€=Ba° (8.16)

we have B defined in terms of the displacement derivatives with respect to the local
Cartesian coordinates X, y, zZ by Eq. (8.11). Now, therefore, two sets of transformations
are necessary before the element can be integrated with respect to the curvilinear
coordinates &, 1, (.

First, by identically the same process as we used in Chapter 9 of Volume 1, the
derivatives with respect to the x, y, z directions are obtained. As Eq. (8.4) relates
the global displacements u, v, w to the curvilinear coordinates, the derivatives of
these displacements with respect to the global x, y, z coordinates are given by a
matrix relation:

Uy Uy Wy Ug ve We
-l

Uy Uy Wy | =JT LUy v, Wy (8.17)

u, v, w, Ue v W

In this, the Jacobian matrix is defined as

Xe Ve Zg
J=|x, v, z, (8.18)
Xe Ve Z¢

and calculated from the coordinate definitions of Eq. (8.2). Now, for every set of
curvilinear coordinates the global displacement derivatives can be obtained numerically.
A second transformation to the local displacements X, y, z will allow the strains,
and hence the B matrix, to be evaluated. The directions of the local axes can be
established from a vector normal to the &n mid-surface (¢ = 0). This vector can be
found from two vectors x ¢ and x ,, that are tangential to the mid-surface. Thus

xﬁf xJ] y,fz,n - y.nz,f
V3 = y,f X y,T/ = Z,fx;r/ - Z,n x.£ (819)
7t Zn XeVm = XnVe

We can now construct two perpendicular vectors V; and V, following the process
given previously to describe the ¥ and y directions, respectively. The three orthogonal
vectors can be reduced to unit magnitudes to obtain a matrix of vectors in the X, y, Z
directions (which is in fact the direction cosine matrix) given as

0=1[vi, v, v;] (8.20)

The global derivatives of displacement u, v and w are now transformed to the local
derivatives of the local orthogonal displacements by a standard operation

ﬁj 175 W’g Uy Uy Wy

= =~ - _aT

iy Uy Wy | =0 ju, v, w, 8 (8.21)
Uz vz Wz u. v, w.
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From this the components of the B matrix can now be found explicitly, noting that 5
degrees of freedom exist at each node:

¢ = Ba (8.22)

where the form of a is given in Eq. (8.5).
The infinitesimal volume is given in terms of the curvilinear coordinates as

dxdydz = det|J|d¢ dnd¢ = j de dnd¢ (8.23)

where j = det|J|. This standard expression completes the basic formulation.

Numerical integration within the appropriate limits is carried out in exactly the
same way as for three-dimensional elements using the Gaussian quadrature formulae
discussed in Chapter 9 of Volume 1. An identical process serves to define all the other
relevant element matrices arising from body and surface loading, inertia matrices, etc.

As the variation of the strain quantities in the thickness, or ¢ direction, is linear, two
Gauss points in that direction are sufficient for homogeneous elastic sections, while
three or four in the &, n directions are needed for parabolic and cubic shape functions
N;, respectively.

It should be remarked here that, in fact, the integration with respect to ¢ can be
performed explicitly if desired, thus saving computation time.!*

8.2.5 Some remarks on stress representation

The element properties are now defined, and the assembly and solution are in
standard form. It remains to discuss the presentation of the stresses, and this problem
is of some consequence. The strains being defined in local direction, &, are readily
available. Such components are indeed directly of interest but as the directions of
local axes are not easily visualized (and indeed may not be continuously defined
between adjacent elements) it is sometimes convenient to transfer the components
to the global system using the standard transformation

Ox Txy Txz Oz chj' Txz

_ T
Tyx Oy Ty | =075 05 732 |0 (8.24)
Tex Tzy  O2 Tzx  Tzp Oz

Such a transformation should be performed only for elements which belong to the
approximation for the same smooth surface.

In a general shell structure, the stresses in a global system do not, however, give a
clear picture of shell surface stresses. It is thus convenient always to compute the
principal stresses (or invariants of stress) by a suitable transformation. Regarding
the shell stresses more rationally, one may note that the shear components 7- and
7y are in fact zero on the top and bottom surfaces and this may be noted when
making the transformation of Eq. (8.24) before converting to global components to
ensure that the principal stresses lie on the surface of the shell. The values obtained
directly for these shear components are the average values across the section. The
maximum transverse shear on a solid cross-section occurs on the mid-surface and
is equal to about 1.5 times the average value.
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8.3 Special case of axisymmetric, curved, thick shells

For axisymmetric shells the formulation is simplified. Now the element mid-surface is
defined by only two coordinates &, n and a considerable saving in computer effort is
obtained.!

The element now is derived in a similar manner by starting from a two-dimensional
definition of Fig. 8.4.

Equations (8.1) and (8.2) are now replaced by their two-dimensional equivalents
defining the relation between coordinates as

r L4q (1 L—q [
{Z} :ZNI(E) (2{Zi}top+2{ }bottom>
r; 1

Zi

(8.25)
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,
Fig. 8.4 Coordinates for an axisymmetric shell: (a) coordinate representation; (b) shell representation.
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with

[ cos o;
W { sin ¢; }

in which ¢; is the angle defined in Fig. 8.4(b) and ¢; is the shell thickness. Similarly, the
displacement definition is specified by following the lines of Eq. (8.4).

Here we consider the case of axisymmetric loading only. Non-axisymmetric loading
is addressed in Chapter 9 along with other schemes which permit treatment of
problems in a reduced manner. Thus, we specify the two displacement components as

Cl-sa({uhee{ s e

In this §; stands for the rotation illustrated in Fig. 8.5, and u;, w; stand for the
displacement of the middle surface node.
Global strains are conveniently defined by the relationship®

€, u,
€, w.

g = L= ' (8.27)
g uflr
Vrz u.- + W,

These strains are transformed to the local coordinates and the component normal to i
(n = constant) is neglected.

All the transformations follow the pattern described in previous sections and need
not be further commented on except perhaps to remark that they are now carried out
only between sets of directions &,7, r,z, and 7,z, thus involving only two variables.

Similarly the integration of element properties is carried out numerically with
respect to £ and 7 only, noting, however, that the volume element is

dxdydz =det|J|dédnrdf =jrdédnde (8.28)

Z0) %,

Z A \

Fig. 8.5 Global displacements in an axisymmetric shell.
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Fig. 8.6 Axisymmetric shell elements: (a) linear; (b) parabolic; (c) cubic.

By suitable choice of shape functions N;(&), straight, parabolic, or cubic shapes of
variable thickness elements can be used as shown in Fig. 8.6.

8.4 Special case of thick plates

The transformations necessary in this chapter are somewhat involved and the
programming steps are quite sophisticated. However, the application of the principle
involved is available for thick plates and readers are advised to first test their com-
prehension on such a simple problem.

Here the following obvious simplifications arise.

1. ¢ =2z/tand unit vectors vy, v, and v3 can be taken in the directions of the x, y, and
z axes respectively.

2. «; and f3; are simply the rotations ¢, and 6., respectively (see Chapter 5).

3. It is no longer necessary to transform stress and strain components to a local
system of axes X, ¥, Z and global definitions x, y, z can be used throughout. For
elements of this type, numerical thickness integration can be avoided and, as an
exercise, readers are encouraged to derive the stiffness matrices, etc., for, say,
linear, rectangular elements. Forms will be found which are identical to those
derived in Chapter 5 with an independent displacement and rotation interpolation
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and using shear constraints. This demonstrates the essential identity of the alter-
native procedures.

8.5 Convergence

Whereas in three-dimensional analysis it is possible to talk about absolute convergence
to the true exact solution of the elasticity problem, in equivalent plate and shell
problems such a convergence cannot happen. As the element size decreases the so-
called convergent solution of a plate bending problem approaches only to the exact
solution of the approximate model implied in the formulation. Thus, here again con-
vergence of the above formulation will only occur to the exact solution constrained
by the requirement that straight ‘normals’ remain straight during deformation.

In elements of finite size it will be found that pure bending deformation modes are
nearly always accompanied by some shear strains which in fact do not exist in the
conventional thin plate or shell bending theory (although quite generally shear stresses
may be deduced by equilibrium considerations on an element of the model, similar to
the manner by which shear stresses in beams are deduced). Thus large elements deform-
ing mainly under bending action (as would be the case of the shell element degenerated to
a flat plate) tend to be appreciably too stiff. In such cases certain limits of the ratio of size
of element to its thickness need to be imposed. However, it will be found that such restric-
tions often are relaxed by the simple expedient of reducing the integration order.*

Figure 8.7 shows, for instance, the application of the quadratic eight-node element to
a square plate situation. Here results for integration with 3 x 3 and 2 x 2 Gauss points

Thin plate
exact

Fig. 8.7 Asimply supported square plate under uniform load gy: plot of central deflection w, for eight-node
elements with (a) 3 x 3 Gauss point integration and (b) with 2 x 2 (reduced) Gauss point integration. Central
deflection is w, for thin plate theory.



Inelastic behaviour

are given and results plotted for different thickness-to-span ratios. For reasonably thick
situations, the results are similar and both give the additional shear deformation not
available by thin plate theory. However, for thin plates the results with the more
exact integration tend to diverge rapidly from the now correct thin plate results whereas
the reduced integration still gives excellent results. The reasons for this improved
performance are fully discussed in Chapter 2 and the reader is referred there for further
plate examples using different types of shape functions.

8.6 Inelastic behaviour

All the formulations presented in this chapter can of course be used for all non-linear
materials. The procedures are similar to those mentioned in Chapters 4 and 5 dealing
with plates. Now it is only necessary to replace Eqs (8.12) and (8.13) by the appropriate
constitutive equation and tangent operator, respectively. In this case it is necessary
always to perform the through-thickness integration numerically since a priori knowl-
edge of the behaviour will not be available. Any of the constitutive models described in
Chapter 3 may be used for this purpose provided appropriate transformations are made
to make o zero.
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Fig. 8.8 Spherical dome under uniform pressure analysed with 24 cubic elements (first element subtends an
angle of 0.1° from fixed end, others in arithmetic progression).
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8.7 Some shell examples

A limited number of examples which show the accuracy and range of application of
the axisymmetric shell formulation presented in this chapter will be given. For a fuller
selection the reader is referred to references 1-7.
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Fig. 8.9 Thin cylinder under a unit radial edge load.
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8.7.1 Spherical dome under uniform pressure

The ‘exact’ solution of shell theory is known for this axisymmetric problem,
illustrated in Fig. 8.8. Twenty-four cubic-type elements are used with graded size
more closely spaced towards supports. Contrary to the ‘exact’ shell theory solution,
the present formulation can distinguish between the application of pressure on the
inner and outer surfaces as shown in the figure.

W
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AN E=3 x 10%K/in?
) v=0
% =3in N / g=0.09 k/in®
A\
)y
Supported by = 0° Free edge
rigid diaphragm
u=0
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Meshes used

,\. \\
(@) ()
\
\
(b)
Degree of freedom
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(a) 23 \
B | 76 \
(¢ 159 (o)

(d) | 272

Fig. 8.10 Cylindrical shell example: self-weight behaviour.
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8.7.2 Edge loaded cylinder

A further axisymmetric example is shown in Fig. 8.9 to study the effect of subdivision.
Two, six, or fourteen cubic elements of unequal length are used and the results for
both of the finer subdivisions are almost coincident with the exact solution. Even
the two-element solution gives reasonable results and departs only in the vicinity of

the loaded edge.

Once again the solutions are basically identical to those derived with independent

slope and displacement interpolation in the manner presented in Chapter 5.

8.7.3 Cylindrical vault

This is a test example of application of the full process to a shell in which bending
action is dominant as a result of supports restraining deflection at the ends (see

also Sec. 6.8.2).

20°

40°
0

20°
Axial at support
Original element | Intergration for | Mesh | Simple 2 x 2
reference 3 | shear reduced intergation
u] A (a) u]
A x (b) a
v + (o) v
° ° (d) o

Fig. 8.11 Displacement (parabolic element), cylindrical shell roof.
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Some shell examples

In Fig. 8.10 the geometry, physical details of the problem, and subdivision are
given, and in Fig. 8.11 the comparison of the effects of 3 x 3 and 2 x 2 integration
using eight-node quadratic elements is shown on the displacements calculated.
Both integrations result, as expected, in convergence. For the more exact integration,
this is rather slow, but, with reduced integration order, very accurate results are
obtained, even with one element. The improved convergence of displacements is
matched by rapid convergence of stress components.

This example illustrates most dramatically the advantages of this simple expedient
and is described more fully in references 4 and 6. The comparison solution for this
problem is one derived along more conventional lines by Scordelis and Lo.’

8.7.4 Curved dams

All the previous examples were rather thin shells and indeed demonstrated the applic-
ability of the process to these situations. At the other end of the scale, this formulation
has been applied to the doubly curved dams illustrated in Chapter 9 of Volume 1
(Fig. 9.28). Indeed, exactly the same subdivision is again used and results reproduce
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Fig. 8.12 An analysis of cylinder intersection by means of reduced integration shell-type elements."
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almost exactly those of the three-dimensional solution.® This remarkable result is
achieved at a very considerable saving in both degrees of freedom and computer

solution time.

Clearly, the range of application of this type of element is very wide.

8.7.5 Pipe penetration' and spherical cap’

The last two examples, shown in Figs 8.12—8.14, illustrate applications in which the
irregular shape of elements is used. Both illustrate practical problems of some interest
and show that with reduced integration a useful and very general shell element is

available, even when the elements are quite distorted.

Hoop stress (k/in?)

Axial stress (k/in2)

(b)

Fig. 8.13 Cylinder-to-cylinder intersections of Fig. 8.12: (a) hoop stresses near 0° line; (b) axial stresses near 0°

line.
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Concluding remarks

a=0 10 20 30 39°
A ———— _AL ______ A‘ _____________
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Fig. 8.14 A spherical cap analysis with irregular isoparametric shell elements using full 3 x 3 and reduced
2 x 2 integration.

8.8 Concluding remarks

The elements described in this chapter using degeneration of solid elements are shown
in plate and axisymmetric problems to be nearly identical to those described in
Chapters 5 and 7 where an independent slope and displacement interpolation is
directly used in the middle plane. For the general curved shell the analogy is less
obvious but clearly still exists. We should therefore expect that the conditions
established in Chapter 5 for robustness of plate elements to be still valid. Further,
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it appears possible that other additional conditions on the various interpolations may
have to be imposed in curved element forms. Both statements are true. The eight- and
nine-node elements which we have shown in the previous section to perform well will
fail under certain circumstances and for this reason many of the more successful plate
elements also have been adapted to the shell problem.

The introduction of additional degrees of freedom in the interior of the eight-node
serendipity element was first suggested by Cook''"'? and later by Hughes'*~!° with-
out, however, achieving complete robustness. The full lagrangian cubic interpolation
as shown in Chapter 5 is quite effective and has been shown to perform well. How-
ever, the best results achieved to date appear to be those in which ‘local constraints’
are applied (see Sec. 5.5) and such elements as those due to Dvorkin and Bathe,'¢
Huang and Hinton,!” and Simo ez al.'®" fall into this category.

While the importance of transverse shear strain constraints is now fully under-
stood, the constraints introduced by the ‘in-plane’ (membrane) stress resultants are
less amenable to analysis (although the elastic parameters Et associated with these
are of the same order as those of shear Gt). It is well known that membrane locking
can occur in situations that do not permit inextensional bending. Such locking has
been thoroughly discussed?® 2 but to date the problem has not been rigorously
solved and further developments are required.

Much effort is continuing to improve the formulation of the processes described in
this chapter as they offer an excellent solution to the curved shell problem.?? 34
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Semi-analytical finite element
processes — use of orthogonal
functions and ‘finite strip’ methods

9.1 Introduction

Standard finite element methods have been shown to be capable, in principle, of
dealing with any two- or three- (or even four-)" dimensional situations. Nevertheless,
the cost of solutions increases greatly with each dimension added and indeed, on
occasion, overtaxes the available computer capability. It is therefore always desirable
to search for alternatives that may reduce computational effort. One such class of
processes of quite wide applicability will be illustrated in this chapter.

In many physical problems the situation is such that the geometry and material
properties do not vary along one coordinate direction. However, the ‘load’ terms
may still exhibit a variation in that direction, preventing the use of such simplifying
assumptions as those that, for instance, permitted a two-dimensional plane strain
or axisymmetric analysis to be substituted for a full three-dimensional treatment.
In such cases it is possible still to consider a ‘substitute’ problem, not involving the
particular coordinate (along which the geometry and properties do not vary), and
to synthesize the true answer from a series of such simplified solutions.

The method to be described is of quite general use and, obviously, is not limited to
structural situations. It will be convenient, however, to use the nomenclature of
structural mechanics and to use potential energy minimization as an example.

We shall confine our attention to problems of minimizing a quadratic functional
such as described in Chapters 2—6 of Volume 1. The interpretation of the process
involved as the application of partial discretization in Chapter 3 of Volume 1 followed
(or preceded) by the use of a Fourier series expansion should be noted.

Let (x, y, z) be the coordinates describing the domain (in this context these do not
necessarily have to be the Cartesian coordinates). The last one of these, z, is the
coordinate along which the geometry and material properties do not change and
which is limited to lie between two values

0<z<a

The boundary values are thus specified at z = 0 and z = a.

* See finite elements in the time domain in Chapter 18 of Volume 1.
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We shall assume that the shape functions defining the variation of displacement u
can be written in a product form as

L —
u=N(x,y,z)a’ = Z (N(x7y) coshTTZ +N(x, ) sinlzz> (a')
=1

(9.1)
N'(x,p,2) (a')

I
NS

\
Il

1

In this type of representation completeness is preserved in view of the capability of
Fourier series to represent any continuous function within a given region (naturally
assuming that the shape functions N and N in the domain x, y satisfy the same
requirements).

The loading terms will similarly be given a form

L L
b= Z <coslﬂ b + sinlﬂ bl) = Z b (x,y,2) (9.2)
= a a =
for body force, with similar form for concentrated loads and boundary tractions (see
Chapter 2 of Volume 1). Indeed, initial strains and stresses, if present, would be
expanded again in the above form.
Applying the standard processes of Chapter 2 of Volume 1 to the determination of
the element contribution to the equation minimizing the potential energy, and limit-
ing our attention to the contribution of body forces b only, we can write

alL’ fl(’

=K< b4+ 0 b =0 (9.3)
Le fLe‘

0a®
a
In the above, to avoid summation signs, the vectors a°, etc., are expanded, listing the
contribution of each value of / separately.
Now a typical submatrix of K¢ is

(K'™)e = J” (B)"DB" dx dy dz (9.4)
v
and a typical term of the ‘force’ vector becomes
(= ”J (NYTb dx dydz (9.5)
14

Without going into details, it is obvious that the matrix given by Eq. (9.4) will
contain the following integrals as products of various submatrices:

@ rz mmnz

I, =| sin— cos—— dz

0 a a

@ Iwz . mmz

L, = sin— sin
a

dz (9.6)

Imz mmz
L= cos— cos—— dz
a a
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These integrals arise from products of the derivatives contained in the definition of B/
and, owing to the well-known orthogonality property, give

12 = 13 =0 for Z7é m (97)

when/=1,2,...and m = 1,2,.... The first integral /; is only zero when / and m are
both even or odd numbers. The term involving /;, however, vanishes in many
applications because of the structure of B'. This means that the matrix K¢ becomes
a diagonal one and that the assembled final equations of the system have the form

Kl 1 al f]
K22 a2 f2

. +9 9.8)
KLL aL fL

and the large system of equations splits into L separate problems:
K'a +f =0 (9.9)

in which
K! = ”JV(Bf)TnBj dxdyd: (9.10)

Further, from Eqs (9.5) and (9.2) we observe that owing to the orthogonality
property of the integrals given by Eqs (9.6), the typical load term becomes simply

£l = J“V(Nf)Tb’ dx dy dz 9.11)

This means that the force term of the /th harmonic only affects the /th system of
Eq. (9.9) and contributes nothing to the other equations. This extremely important
property is of considerable practical significance for, if the expansion of the loading
factors involves only one term, only one set of equations need be solved. The solution
of this will tend to the exact one with increasing subdivision in the xy domain only.
Thus, what was originally a three-dimensional problem now has been reduced to a
two-dimensional one with consequent reduction of computational effort.

The preceding derivation was illustrated on a three-dimensional, elastic situation.
Clearly, the arguments could equally well be applied for reduction of two-
dimensional problems to one-dimensional ones, etc., and the arguments are not
restricted to problems of elasticity. Any physical problem governed by a minimization
of a quadratic functional (Chapter 3 of Volume 1) or by linear differential equations is
amenable to the same treatment.

A word of warning should be added regarding the boundary conditions imposed on
u. For a complete decoupling to be possible these must be satisfied separately by each
and every term of the expansion given by Eq. (9.1). Insertion of a zero displacement in
the final reduced problem implies in fact a zero displacement fixed throughout all
terms in the z direction by definition. Care must be taken not to treat the final
matrix therefore as a simple reduced problem. Indeed, this is one of the limitations
of the process described.
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When the loading is complex and many Fourier components need to be considered
the advantages of the approach outlined here reduce and the full solution sometimes
becomes more efficient.

Other permutations of the basic definitions of the type given by Eq. (9.1) are
obviously possible. For instance, two independent sets of parameters a° may be
specified with each of the trigonometric terms. Indeed, on occasion use of other
orthogonal functions may be possible. The appropriate functions are often related
to a reduction of the differential equation directly using separation of variables.'

As trigonometric functions will arise frequently it is convenient to remind the
reader of the following integrals:

J siny;zcosyzdz =0 when [=0,1,...
0

y ; . (9.12)
J sinzfy,zdz:J coszfy,zdz:i when [=1,2,...
0 0

where v, = I7/a.

9.2 Prismatic bar

Consider a prismatic bar, illustrated in Fig. 9.1, which is assumed to be held at z =0
and z = a in a manner preventing all displacements in the xy plane but permitting
unrestricted motion in the z direction (traction ¢, = 0). The problem is fully three-
dimensional and three components of displacement u, v, and w have to be considered.

y

Fig. 9.1 A prismatic bar reduced to a series of two-dimensional finite element solutions.



Prismatic bar

Subdividing into finite elements in the xy plane we can prescribe the /th displace-
ment components as

u' siny; z 0 0 ul
u=<4 3= Z N;| 0 siny, z 0 ol (9.13)
M/’/ i 0 0 COoS v,z wvg

In this, N; are simply the (scalar) shape functions appropriate to the elements used in
the xy plane and again ; = I7/a. If, as shown in Fig. 9.1, simple triangles are used
then the shape functions are given by Eqs (4.7) and (4.8) in Chapter 4 of Volume 1,
but any of the more elaborate elements described in Chapter 8 of Volume 1 would
be equally suitable (with or without the transformations given in Chapter 9 of
Volume 1). The displacement expansion ensures zero u and v displacements at the
ends and the zero ¢, traction condition can be imposed in a standard manner.

As the problem is fully three-dimensional, the appropriate expression for strain
involving all six components needs to be considered. This expression is given in
Eq. (1.15) of Chapter 1. On substitution of the shape function given by Eq. (9.13)
for a typical term of the B matrix we have

[ N, sinvy:z 0 0 T
0 N;, siny;z 0
B, = 0 0 —Niy sinz (9.14)
Ny sinyz  N; . sinvyz 0
0 Njyjcosyiz  N;y cosyz
| N;7y; cosv;z 0 N;ycosyz |

It is convenient to separate the above as
B! = B! sinv,z + B! cos,z (9.15)
In all of the above it is assumed that the parameters are listed in the usual order:
= o W] (9.16)

and that the axes are as shown in Fig. 9.1.
The stiffness matrix can be computed in the usual manner, noting that

(K = ”J B/'DB;dxdyd: (9.17)
. Ve .

On substitution of Eq. (9.15), multiplying out, and noting the value of the integrals
from Eq. (9.12), this reduces to

a P n | TR/
(Kl =4 ” (BDB} + B DB]) dxdy (9.18)
when / = 1,2,.... The integration is now simply carried out over the element area.”

It should be noted that now, even for a single triangle, the integration is not trivial as some linear terms
from N; will remain in B.
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The contributions from distributed loads, initial stresses, etc., are found as the
loading terms. To match the displacement expansions distributed body forces may
be expanded in the Fourier series

[ sinz 0 0 1 (b(x,y,2)
b = Jo 0 sin, z 0 by(x,y,z) pdz (9.19)
| 0 0 cosvyz | | b-(x,y,2)

Similarly, concentrated line loads can be expressed directly as nodal forces

” _sinfylz 0 0 ] fr(x7y7z>
=] | o sz 0 (A e (9.20)
0 0 0 cosyz| \fx,p,2)

in which f f are intensities per unit length.
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Fig. 9.2 A thick box bridge prism of straight or curved platform.



Thin membrane box structures

The boundary conditions used here have been of a type ensuring simply supported
conditions for the prism. Other conditions can be inserted by suitable expansions.

The method of analysis outlined here can be applied to a range of practical
problems — one of these being a popular type of box girder, concrete bridge,
illustrated in Fig. 9.2. Here a particularly convenient type of element is the distorted,
serendipity or lagrangian quadratic or cubic of Chapters 8 and 9 of Volume 1.
Finally, it should be mentioned that some restrictions placed on the general shapes
defined by Eqs (9.1) or (9.13) can be removed by doubling the number of parameters
and writing expansions in the form of two sums:
L L
u= Z N(x, ) cosyzal! + Z N(x, y) sin~,za® (9.21)
=1 1=1

Parameters a’ and a® are independent and for every component of displacement two
values have to be found and two equations formed.
An alternative to the above process is to write the expansion as

u="> " [N(x,») exp(iyz)]a’
and to observe that both N and a are then complex quantities.
Complex algebra is available in standard programming languages and the identity
of the above expression with Eq. (9.21) will be observed, noting that

expif = cosf +isinf

9.3 Thin membrane box structures

In the previous section a three-dimensional problem was reduced to that of two
dimensions. Here we shall see how a somewhat similar problem can be reduced to
one-dimensional elements (Fig. 9.3).

Fig. 9.3 A ‘membrane’ box with one-dimensional elements.
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A box-type structure is made up of thin shell components capable of sustaining
stresses only in its own plane. Now, just as in the previous case, three displacements
have to be considered at every point and indeed similar variation can be prescribed for
these. However, a typical element ij is ‘one-dimensional’ in the sense that integrations
have to be carried out only along the line 77 and only stresses in that direction be
considered. Indeed, it will be found that the situation and solution are similar to
that of a pin-jointed framework.

9.4 Plates and boxes with flexure

Consider now a rectangular plate simply supported at the ends and in which all strain
energy is contained in flexure. Only one displacement, w, is needed to specify fully the
state of strain (see Chapter 4).

For consistency of notation with Chapter 4, the direction in which geometry and
material properties do not change is now taken as y (see Fig. 9.4). To preserve
slope continuity the functions need to include now a ‘rotation’ parameter 6;.

Use of simple beam functions (cubic Hermitian interpolations) is easy and for a
typical element ij we can write (with v, = I7w/a)

w' = N(x) sinv, y (a’)¢ (9.22)

ensuring simply supported end conditions. In this, the typical nodal parameters are

/
M/’i
al = { p } (9.23)

The shape functions of the cubic type are easy to write and are in fact identical to the
Hermitian polynomials given in Sect. 4.14 and also those used for the asymmetric thin
shell problem [Chapter 7, Eq. (7.9)].

Fig. 9.4 The 'strip" method in slabs.
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Table 9.1 Square plate, uniform load ¢; three sides simply supported one clamped
(Poisson ratio = 0.3)

Term / Central deflection Central M, Maximum negative M
1 0.002832 0.0409 —0.0858

2 —0.000050 —0.0016 0.0041

3 0.002786 0.0396 —0.0007

b)) 0.002786 0.0396 —0.0824

Series 0.0028 0.039 —0.084

Multiplier qa*/D g’ qa”

Using all definitions of Chapter 4 the strains (curvatures) are found and the B
matrices determined; now with C; continuity satisfied in a trivial manner, the problem
of a two-dimensional kind has here been reduced to that of one dimension.

This application has been developed by Cheung and others,>”!7 named by him the
“finite strip’ method, and used to solve many rectangular plate problems, box girders,
shells, and various folded plates.

It is illuminating to quote an example from the above papers here. This refers to a
square, uniformly loaded plate with three sides simply supported and one clamped.
Ten strips or elements in the x direction were used in the solution, and Table 9.1
gives the results corresponding to the first three harmonics.

Not only is an accurate solution of each / term a simple one involving only some
nineteen unknowns but the importance of higher terms in the series is seen to decrease
rapidly.

Extension of the process to box structures in which both membrane and bending
effects are present is almost obvious when this example is considered together with
the one of the previous section.

In another paper Cheung® shows how functions other than trigonometric ones can
be used to advantage, although only partial decoupling then occurs (see Sec. 9.7
below).

In the examples just quoted a thin plate theory using the single displacement
variable w and enforcing C; compatibility in the x direction was employed.
Obviously, any of the independently interpolated slope and displacement elements
of Chapter 5 could be used here, again employing either reduced integration or
mixed methods. Parabolic-type elements with reduced integration are employed in
references 13 and 14, and linear interpolation with a single integration point is
shown to be effective in reference 15.

Other applications for plate and box type structures abound and additional
information is given in the text of reference 17.

9.5 Axisymmetric solids with non-symmetrical load

One of the most natural and indeed earliest applications of Fourier expansion occurs
in axisymmetric bodies subject to non-axisymmetric loads. Now, not only the radial
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Fig. 9.5 An axisymmetric solid; coordinate displacement components in an axisymmetric body.

(u) and axial (w) displacement (as in Chapter 5 of Volume 1) will have to be
considered but also a tangential component (v) associated with the tangential angular
direction 0 (Fig. 9.5). It is in this direction that the geometric and material properties
do not vary and hence here that the elimination will be applied.

To simplify matters we shall consider first components of load which are
symmetric about the # = 0 axis and later include those which are antisymmetric.
Describing now only the nodal loads (with similar expansion holding for body
forces, boundary conditions, initial strains, etc.) we specify forces per unit of
circumference as

R cosl6

T
M)~

-~
Il
—_

T'sinl6 (9.24)

i
M[\

~
Il

7! cos 16

I
M~

Z

\_
I

1

in the direction of the various coordinates for symmetric loads [Fig. 9.6(a)]. The
apparently non-symmetric sine expansion is used for 7', since to achieve symmetry
the direction of T has to change for 6 > 7.

The displacement components are described again in terms of the two-dimensional
(r, z) shape functions appropriate to the element subdivision, and, observing
symmetry, we write, as in Eq. (9.13),

u cosy, 0 0 0 ul
=S4 p=> N| 0 siny6 0 ol (9.25)

w! 0 0 cosv,0 | | w!
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Fig. 9.6 Load and displacement components in an axisymmetric body: (a) symmetric; (b) antisymmetric.

To proceed further it is necessary to specify the general, three-dimensional expression
for strains in cylindrical coordinates. These are given by'®

€, u,
€, W

e de L) lutval/ (9.26)
Yrz u,z +w r
Yo v+ we/r
Yor ug/r+v, —v/r

We have on substitution of Eq. (9.25) into Eq. (9.26), and grouping the variables as
in Eq. (9.16):

[ N;,cosld 0 0 T
0 0 N;, coslf
Bl — N,;/rcoslf IN;/rcoslf 0 (9.27)
! N;.coslf 0 N;, coslf '
0 N;.sinl0 —IN;/rsinl0
—IN;/rsinl (N;, — N;/r) sinl0 0 1

A purely axisymmetric problem may be described for the complete zero harmonic
(I = 0) and a further simplification arises in that the strains split into two problems:
the first involves the displacement components u and w which appear only in the
first four components of strain; and the second involves only the v displacement
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component and appears only in the last two shearing strains. This second problem is
associated with a torsion problem on the axisymmetric body — with the first problem
sometimes referred to as a torsionless problem. For an isotropic elastic material the
stiffness matrix for these two problems completely decouples as a result of the
structure of the D matrix, and they can be treated separately. However, for inelastic
problems a coupling occurs whenever both torsionless and torsional loading are both
applied as loading conditions on the same problem. Thus, it is often expedient to form
the axisymmetric case including all three displacement components (as is necessary
also for the other harmonics).

For the elastic case the remaining steps of the formulation follow precisely the
previous derivations and can be performed by the reader as an exercise.

For the antisymmetric loading, of Fig. 9.6(b), we shall simply replace the sine by
cosine and vice versa in Eqs (9.24) and (9.25).

The load terms in each harmonic are obtained by virtual work as

Rl
B md T when/=1,2,...
R cos’16 _
27 7z
fl= J 7' sin216 p df = (9.28)
0 - R
7' cos* 10
278 0 when /=0
Zl
for the symmetric case. Similarly, for the antisymmetric case
R
~ =1 _
R sinl0 m 7: when/=1,2,...
27 ~ Z/
f! :J T cos?16 p do = 0 (9.29)
0
51 a2 _
Z sin” 19 2md T when /=0
0

We see from this and from an expansion of K° that, as expected, for / = 0 the
problem reduces to only two variables and the axisymmetric case is retrieved when
symmetric terms only are involved. Similarly, when / = 0 only one set of equations

=D

Fig. 9.7 Torsion of a variable section circular bar.
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Fig. 9.8 (a) An axisymmetric tower under non-symmetric load; four cubic elements are used in the solution;

the harmonics of load expansion used in the analysis are shown.
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remains in the variable for v for the antisymmetric case. This corresponds to constant
tangential traction and solves simply the torsion problem of shafts subject to known
torques (Fig. 9.7). This problem is classically treated by the use of a stress function'”
and indeed in this way has been solved by using a finite element formulation.” Here,
an alternative, more physical, approach is available.

The first application of the above concepts to the analysis of axisymmetric solids
was made by Wilson.?' A simple example illustrating the effects of various harmonics
is shown in Figs 9.8(a) and 9.8(b).

(sign reverses)
0> n/2

n=2
Symmetric

Combined stress

Fig. 9.8 (b) Distribution of o, the vertical stress on base arising from various harmonics and their combina-
tion (third harmonic identically zero), the first two harmonics give practically the complete answer.
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9.6 Axisymmetric shells with non-symmetrical load
9.6.1 Thin case - no shear deformation

The extension of analysis of axisymmetric thin shells as described in Chapter 7 to
the case of non-axisymmetric loads is simple and will again follow the standard
pattern.

Fig. 9.9 Axisymmetric shell with non-symmetric load; displacements and stress resultants.

It is, however, necessary to extend the definition of strains to include now all three
displacements and force components (Fig. 9.9). Three membrane and three bending
effects are now present and, extending Eq. (7.1) involving straight generators, we now
define strains as*>* *

Es Uy
€p Vy/r+ (it cos¢p —w sing)/r

e )0l _ Up/r—+ 10, j v cosp/r 930
Xs —W g
Xo —V0 o /1" — W COS /1 + Ty sinB/r
Xst 2 (—W,se/r + Wy cos ¢>/r2 + 7, sing/r — v sin¢ cos ¢/r2)

* Various alternatives are available as a result of the multiplicity of shell theories. The one presented is quite
commonly accepted.
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The corresponding ‘stress’ matrix is

¢ = (9.31)

MSG

with the three membrane and bending stresses defined as in Fig. 9.9.

Once again, symmetric and antisymmetric variation of loads and displacements
can be assumed, as in the previous section. As the processes involved in executing
this extension of the application are now obvious, no further description is needed
here, but note again should be made of the more elaborate form of equations
necessary when curved elements are involved [see Chapter 7, Eq. (7.23)].

The reader is referred to the original paper by Grafton and Strome™ in which
this problem is first treated and to the many later papers on the subject listed in
Chapter 7.

23

9.6.2 Thick case - with shear deformation

The displacement definition for a shell which includes the effects of transverse
shearing deformation is specified using the forms given in Eqs (8.4) and (8.26). For
a case of loading which is symmetric about 6 = 0, the decomposition into global
trigonometric components involves the three displacement components of the nth
harmonic as

u" cosnff 0 0 u? —sing; 0 ;

. t; «;
O = Z N;| 0 sin nf 0 vy % 0 1 { P }
w" 0 0 cosné w cosp; 0

(9.32)

In this u;, w;, and «; stand for the displacements and rotation illustrated in Fig. 8.5, v;
is a displacement of the middle surface node in the tangential (6) direction, and [; is a
rotation about the vector tangential to the mid-surface.

Global strains are conveniently defined by the relationship'®

Er u,
€. W,
R [u+vg)/r 9.33)
Vrz u. =+ w,
Vz6 v+ wy/r
Yor UV, — U/I’ + uﬂ/r
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These strains are transformed to the local coordinates, and the component normal to
1 (n = constant) is neglected. As in the axisymmetric case described in Chapter 8, the
D matrix relating local stresses and strains takes a form identical to that defined by
Eq. (8.13).

A purely axisymmetric problem may again be described for the complete zero
harmonic problem and again, as in the non-symmetric loading of solids, the strains
split into two problems defining a torsionless and a torsional state. However, for
inelastic problems a coupling again occurs whenever both torsionless and torsional
loading are both applied as loading conditions on the same problem. Thus, it is
often expedient to form the axisymmetric case including all three displacement
components.

9.7 Finite strip method — incomplete decoupling

In the previous discussion, orthogonal harmonic functions were used exclusively in
the longitudinal/circumferential direction. However, the finite strip method devel-
oped by Cheung'’ can in fact be used to solve various structural problems involving
different boundary conditions and arbitrary geometrical shapes at the expense of
introducing a limited amount of coupling.

As already stated, the finite strip method calls for the use of displacement functions
of the multiplicative type (similar to the use of separation of variables in solution of
differential equations), in which simple, finite element polynomials are used in one
direction, and continuously differentiable smooth series or spline functions in the
other. The first type, similar to that previously discussed, is called the semi-analytical
finite strip, and the series must be chosen in such a way that they satisfy a priori the
boundary conditions at the ends of the strip. The second type is called the spline finite
strip method, where usually cubic (B;) spline functions are used and the boundary
conditions are incorporated a posteriori. Here, for a strip, in which a two-dimensional
problem is to be reduced to a one-dimensional one, the displacement previously
defined by Eq. (9.22) now is assumed to be of the form

we = Z N(x) Y,(y)a° (9.34)
n=1
where Y, (y) are suitable continuous functions which are necessary to satisfy the
boundary conditions.

Semi-analytical finite strips with orthogonal series Y, have been developed for plates
and shells with regular shapes. The method is a very good technique for solving single-
span plates and prismatic thin-walled structures under arbitrary loading because of the
uncoupling of the terms in the series. The method is also highly efficient for dynamic
and stability analysis and for static analysis of multispan structures under uniformly
distributed loads, because only a few coupled terms are required to yield a fairly
accurate solution. Spline finite strips are better suited to plates with arbitrary shapes
(parallelogram quadrilateral, S-shaped, etc.), for plates and shells with multispans,
and for concentrated loading and point support conditions.

Displacement functions are of two types, the polynomial part made up of the shape
functions N(x) of standard type and the Y,(y) series or spline function part.
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The most commonly used series are the basic functions> (or eigenfunctions) which
are derived from the solution of the beam vibration differential equation for a single
span

d'y 'y
—_— = 9.35
dy at (9.35)
where « is length of the beam (strip) and p is a parameter.
The general form of such basic functions is

Y,(y) = C; sinn, + C, cos n, + C; sinh 7, + C4 cosh 1, (9.36)

where 1, = p,y/a.
To a much more limited extent the buckling modes of a beam may be used for
stability analysis,”* and the series takes up the form

Y, (y) = Cysinn, + Cycosn, + C3p + Cy (9.37)

The constants C; are determined by the end conditions.
Another form of series solution that has been used for shear walls® is of the form

. . sin p,, + sinh p,, 9.38
Y = — sinh 7, — — cosh cos . 1+ cosh w. 3%
n(y) sin 77, — smh 7, [COS Tl — €08 77}1] |:COS o+ cosh ,un:|

for n=23,...r

where u, = 1.875,4.694, ..., (2n — 1)7/2.

For multiple spans such as illustrated in Fig. 9.10 similar series can be used in each
span with the constant appropriately adjusted to ensure continuity. However, spline
functions are useful here.

Spline, which is originally the name of a small flexible wooden strip employed by a
draftsman as a tool for drawing a continuous smooth curve segment by segment,
became a mathematical tool after the seminal work of Schoenberg.?® A variety of

Fig. 9.10 A typical continuous finite strip.
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Fig. 9.11 Typical spline approximations: (a) typical B; spline; (b) basis functions for B; spline expression.

spline functions are available. The spline function chosen here (Fig. 9.11) to represent
the displacement is the B; cubic spline of equal section length (Bj splines of unequal
section length have been discussed in the paper by Li et al.27) and is given as

m+1

Y(x)= ) a¥(x) (9.39)

i=—1

in which each local Bj spline ¥; has non-zero values over four consecutive sections
with the section node x = x; as the centre and is defined by

0, X < X;_p
(x—x;-2)°, Xi—2 S XS X
v 1) 430 (x = x;_ ) +3h(x —x; ) = 3(x —x;_1)°, xo <x<x
PTOR ) B =30 (x — xi) F 3h(x — x; 01 +3(x — xi1)}, X < x < xipy
(X;42 — X)°, Xip1 S XS X490
0, X > Xit2
(9.40)

The use of B; splines offers certain distinct advantages when compared with the
conventional finite element method and the semi-analytical finite strip method.

1. It is computationally efficient. When using Bj; splines as displacement functions,
continuity is ensured up to the second order (C, continuity). However, to achieve
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the same continuity conditions for conventional finite elements, it is necessary to
have three times as many unknowns at the nodes (e.g. quintic Hermitian functions).

2. It is more flexible than the semi-analytical finite strip method in the boundary
condition treatment. Only the local splines around the boundary point need to
be amended to fit any specified boundary condition.

3. It has wider applications than the semi-analytical finite strip method. The spline
finite strip method can be used to analyse plates with arbitrary shapes.”® In this
case any domain bounded by four curved (or straight) sides can be mapped into
a rectangular one (see Chapter 9 of Volume 1) and all operations for one system
(x,y) can be transformed to corresponding ones for the other system (&, 7).

The finite strip methods have proved effective in a large number of engineering
applications, many listed in the text by Cheung.!” References 29-39 list some of
the typical linear problems solved in statics, vibrations, and buckling analysis of
structures. Indeed, non-linear problems of the type described in Sec. 4.20 have also
been successfully tackled. !

Of considerable interest also is the extension of the procedures to the analysis of
stratified (layered) media such as may be encountered in laminar structures or
foundations.**~**

9.8 Concluding remarks

A fairly general process combining some of the advantages of finite element analysis
with the economy of expansion in terms of generally orthogonal functions has been
illustrated in several applications. Certainly, these only touch on the possibilities
offered, but it should be borne in mind that the economy is achieved only in certain
geometrically constrained situations and those to which the number of terms
requiring solution is limited.

Similarly, other ‘prismatic’ situations can be dealt with in which only a segment of a
body of revolution is developed (Fig. 9.12). Clearly, the expansion must now be taken
in terms of the angle /76/a, but otherwise the approach is identical to that described
previously.”

In the methods of this chapter it was assumed that material properties remain
constant with one coordinate direction. This restriction can on occasion be lifted
with the same general process maintained. An early example of this type was
presented by Stricklin and DeAndrade.*® Inclusion of inelastic behaviour has also
been successfully treated.***

In Chapter 17 of Volume 1 dealing with semi-discretization we considered general
classes of problems for time. All the problems we have described in this chapter could
be derived in terms of similar semi-discretization. We would thus first semi-discretize,
describing the problem in terms of an ordinary differential equation in z of the form

2
K] g‘i‘Kz%‘i’K?,a‘l'f:O
Second, the above equation system would be solved in the domain 0 < z < @ by means
of orthogonal functions that naturally enter the problem as solutions of ordinary
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Fig. 9.12 Other segmental, prismatic situations.

differential equations with constant coefficients. This second solution step is most
easily found by using a diagonalization process described in dynamic applications
(see Chapter 17, Volume 1). Clearly, the final result of such computations would
turn out to be identical with the procedures here described, but on occasion the
above formulation is more self-evident.
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10

Geometrically non-linear problems
— finite deformation

10.1 Introduction

In all our previous discussion we have assumed that deformations remained small so
that linear relations could be used to represent the strain in a body. We now admit the
possibility that deformations can become large during a loading process. In such cases
it is necessary to distinguish between the reference configuration where initial shape of
the body or bodies to be analysed is known and the current or deformed configuration
after loading is applied. Figure 10.1 shows the two configurations and the coordinate
frames which will be used to describe each one. We note that the deformed configura-
tion of the body is unknown at the start of an analysis and, therefore, must be
determined as part of the solution process — a process that is inherently non-linear.
The relationships describing the finite deformation behaviour of solids involve
equations related to both the reference and the deformed configurations. We shall
generally find that such relations are most easily expressed using the indicial notation
introduced in Volume 1 (see Appendix B, Volume 1); however, after these indicial
forms are developed we shall again return to a matrix form to construct the finite
element approximations.

The chapter starts by describing the basic kinematic relations used in finite
deformation solid mechanics. This is followed by a summary of different stress and
traction measures related to the reference and deformed configurations, a statement
of boundary and initial conditions, and an overview of material constitution for finite
elastic solids. A variational Galerkin statement for the finite elastic material is then
given in the reference configuration. Using the variational form the problem is then
cast into a matrix form and a standard finite element solution process is indicated.
The procedure up to this point is based on equations related to the reference config-
uration. A transformation to a form related to the current configuration is performed
and it is shown that a much simpler statement of the finite element formulation
process results — one which again permits separation into a form for treating
nearly incompressible situations.

A mixed variational form is introduced and the solution process for problems
which can have nearly incompressible behaviour is presented. This follows closely
the developments for the small strain form given in Chapter 1. An alternative to
the mixed form is also given in the form of an enhanced strain model (see
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p(X. 1)

X5, X5

X1, X4

Fig. 10.1 Reference and deformed (current) configuration for finite deformation problems.

Chapter 11 of Volume 1). Here a fully mixed construction is shown and leads to a
form which performs well in two- and three-dimensional problems.

In finite deformation problems, loads can be given relative to the deformed
configuration. An example is a pressure loading which always remains normal to a
deformed surface. Here we discuss this case and show that by using finite element
type constructions a very simple result follows. Since the loading is no longer
derivable from a potential function (i.e. conservative) the tangent matrix for the
formulation is unsymmetric, leading in general to a requirement of an unsymmetric
solver in a Newton—Raphson solution scheme.

We next consider the form of material constitutive models for finite deformation.
This is a very complex subject and we present a discussion for only hyperelastic
and isotropic elasto-plastic material forms. Thus, the reader undoubtedly will need
to consult literature on the subject for additional types of models. We do give a
rate model which can be used on some occasions to develop heuristic forms from
small deformation concepts; however, such an approach should be used with caution
and only when experimental data are available to verify the behaviour obtained.

In the last section of this chapter we consider the modelling of interaction between
one or more bodies which come into contact with each other. Such contact problems
are among the most difficult to model by finite elements and we summarize here only
some of the approaches which have proved successful in practice. In general, the finite
element discretization process itself leads to surfaces which are not smooth and, thus,
when large sliding occurs the transition from one element to the next leads to
discontinuities in the response — and in transient applications can induce non-physical
inertial discontinuities also. For quasi-static response such discontinuity leads to
difficulties in defining a unique solution and here methods of multisurface plasticity
prove useful.

We include in the chapter some illustrations of performance for many of the formu-
lations and problem classes discussed; however, the range is so broad that it is not
possible to cover a comprehensive set. Here again the reader is referred to literature
cited for additional insight and results.
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The present chapter concentrates on continuum problems where finite elements are
used to discretize the problem in all directions modelled. In the next chapter we
consider forms for problems which have one (or more) small dimension(s) and thus
can benefit from use of plate and shell formulations of the type discussed earlier in
this volume for small deformation situations.

10.2 Governing equations
10.2.1 Kinematics and deformation

The basic equations for finite deformation solid mechanics may be found in standard
references on the subject.l_4 Here a summary of the basic equations in three dimen-
sions is presented — two dimensional plane problems being a special case of these. A
body B has material points whose positions are given by the vector X in a fixed refer-
ence configuration,” , in a three-dimensional space. In Cartesian coordinates the
position vector is described in terms of its components as:

X=XE; [I=123 (10.1)

where E; are unit orthogonal base vectors and summation convention is used for
repeated indices of like kind (e.g. 7). After the body is loaded each material point is
described by its position vector, X, in the current deformed configuration, w. The
position vector in the current configuration is given in terms of its Cartesian compo-
nents as

X = X;€;; = 17273 (]02)

where e; are unit base vectors for the current time, ¢, and again summation convention
is used. In our discussion, common origins and directions of the reference and current
coordinates are used for simplicity. Furthermore, in a Cartesian system base vectors
do not change with position and all derivations may be made using components of
tensors written in indicial form. Final equations are written in matrix form using
standard transformations described in Chapter 1 and in Appendix B of Volume 1.

The position vector at the current time is related to the reference configuration
position vector through the mapping

x; = ¢i(Xp, 1) (10.3)

Determination of ¢; is required as part of any solution and is analogous to the
displacement vector, which we introduce next. When common origins and directions
for the coordinate frames are used, a displacement vector may be introduced as the
change between the two frames. Accordingly,

x; = 6y (X; + Uyp) (10.4)

* As much as possible we adopt the notation that upper-case letters refer to quantities defined in the
reference configuration and lower-case letters to quantities defined in the current deformed configuration.
Exceptions occur when quantities are related to both the reference and the current configurations.
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where summation convention is implied over indices of the same kind and 6; is a
rank-two shifter tensor between the two coordinate frames, and is defined by a
Kronnecker delta quantity such that

1 ifi=1
bir = P, (10-5)
0 ifi#1
The shifter satisfies the relations
61'[ 61'] = 61] and (5,'1 6]'1 = 61] (106)

where 6;; and ¢;; are Kronnecker delta quantities in the reference and current config-
uration, respectively. Using the shifter, a displacement component may be written
with respect to either the reference configuration or the current configuration and
related through

u; = 6,'1 U[ and UI = (5[11/[,‘ (107)

and we observe that u; = U, etc. Thus, either may be used equally to develop finite
element parameters.

A fundamental measure of deformation is described by the deformation gradient
relative to X; given by

0o,
Fy; = 10.8
il OXI ( )
subject to the constraint

to ensure that material volume elements remain positive. The deformation gradient is
a direct measure which maps a differential line element in the reference configuration
into one in the current configuration as (Fig. 10.1)

_ 0¢;
- 0X,

d.x,' dX] :Fil dX] (1010)
Thus, it may be used to determine the change in length and direction of a differen-
tial line element. The determinant of the deformation gradient also maps a volume
element in the reference configuration into one in the reference configuration,
that is

dv=JdV (10.11)

where dV is a volume element in the reference configuration and dwv its corresponding
form in the current configuration.
The deformation gradient may be expressed in terms of the displacement as

Fr =46 o

i +67Xl]:5i1+“i,1 (10.12)

and is a two-point tensor since it is referred to both the reference and the current
configurations. Using Fj;; directly complicates the development of constitutive
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equations and it is common to introduce deformation measures which are completely
related to either the reference or the current configurations. For the reference
configuration, the right Cauchy—Green deformation tensor, Cyy, is introduced as

Cy=FFy (10.13)
Alternatively the Green strain tensor, E;;, given as
Ey =% (Cry—6p) (10.14)

may be used. The Green strain may be expressed in terms of the reference displace-
ments as
1 [oU; 00U, 0Ug 0Ug 1

"2 =5 U+ U+ Ug U 10.15
) 0X; 0X; 0X; 0X; 2[ rg+Yrr+ Uk K,J] ( )

In the current configuration a common deformation measure is the left Cauchy—

Green deformation tensor, b;;, expressed as

The Almansi strain tensor, ey, is related to the inverse of b;; as

ij>
ey =365~ by") (10.17)

or inverting by

by = ((5”.723”)—‘ (10.18)

Generally, the Almansi strain tensor will not appear naturally in our constitutive
equations and we often will use b; forms directly.

10.2.2 Stress and traction for reference and deformed states

Stress measures

Stress measures the amount of force per unit of area. In finite deformation problems
care must be taken to describe the configuration to which a stress is measured. The
Cauchy (true) stress, o, and the Kirchhoff stress, 7;, are symmetric measures of
stress defined with respect to the current configuration. They are related through
the determinant of the deformation gradient as

7 = J o (10.19)

and usually are the stresses used to define general constitutive equations for materials.
The second Piola—Kirchhoff stress, S;;, is a symmetric stress measure with respect to
the reference configuration and is related to the Kirchhoff stress through the deforma-
tion gradient as

Ty = Fiy S17Fjy (10.20)
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Finally, one can introduce the (unsymmetric) first Piola—Kirchhoff stress, P;;, which
is related to S;; through

Py =FySp (10.21)
and to the Kirchhoff stress by

Traction measures
For the current configuration traction is given by

where n; are direction cosines of a unit outward pointing normal to a deformed
surface. This form of the traction may be related to a reference surface quantity

through force relations defined as
[,' ds = 61‘]T[ ds (1024)

where ds and dS are surface area elements in the current and reference configurations,
respectively, and 77 is traction on the reference configuration. Note that the direction
of the traction component is preserved during the transformation and, thus, remains
directly related to current configuration forces.

10.2.3 Equilibrium equations

Using quantities related to the current (deformed) configuration, the equilibrium
equations for a solid subjected to finite deformation are nearly identical to those
for small deformation. The local equilibrium equation (balance of linear momentum)
is obtained as a force balance on a small differential volume of deformed solid and is
given by>*

80',-]- (m) .

where p is mass density in the current configuration, b](m) is body force per unit mass,
and v; is the material velocity

J ot -

The mass density in the current configuration may be related to the reference config-
uration (initial) mass density, py, using the balance-of-mass principle’™* and yields

po=4Jp (10.27)

= i (10.26)

Thus differences in the equilibrium equation from those of the small deformation case
appear only in the body force and inertial force definitions.

Similarly, the moment equilibrium on a small differential volume element of
the deformed solid gives the balance of angular momentum requirement for the
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Cauchy stress as

(10.28)

which is identical to the result from the small deformation problem.

The equilibrium requirements may also be written for the reference configuration
using relations between stress measures and the chain rule of differentiation.” We
will show the form for the balance of linear momentum when discussing the
variational form for the problem. Here, however, we comment on the symmetry
requirements for stress resulting from angular momentum balance. Using symmetry
of the Cauchy stress tensor and Eqs (10.19) and (10.22) leads to the requirement on
the first Piola—Kirchhoff stress

Fiy Py = Py Fy (10.29)

and subsequently, using Eq. (10.21), to the symmetry of the second Piola—Kirchhoff
stress tensor

S]J == SJ[ (1030)

10.2.4 Boundary conditions

As described in Chapter 1 the basic boundary conditions for a continuum body
consist of two types: displacement boundary conditions and traction boundary
conditions. Boundary conditions generally are defined on each part of the boundary
by specifying components with respect to a local coordinate system defined by the
orthogonal basis, e}, i = 1,2,3. Often one of the directions, say e;, coincides with
the normal to the surface and the other two are in tangential directions along the
surface. At each point on the boundary one (and only one) boundary condition
must be specified for all three directions of the basis. These conditions can be all
for displacements (fixed surface), all for tractions (stress or free surface), or a
combination of displacements and tractions (mixed surface).

Displacement boundary conditions may be expressed for a component by
requiring

X=X, (10.31)

at each point on the displacement boundary, ~,. A quantity with a superposed bar,
such as X; again denotes a specified quantity. The boundary condition may also be
expressed in terms of components of the displacement vector, ;. Accordingly, on -,

u; = il (10.32)

The second type of boundary condition is a traction boundary condition. Using the
orthogonal basis described above, the traction boundary conditions may be given for
each component by requiring

<N
~=

I
~l

(10.33)



Variational description for finite deformation 319

at each point on the boundary, 7,. The boundary condition may be non-linear for
loadings such as pressure loads, as described later in Sec. 10.6.

10.2.5 Initial conditions

Initial conditions describe the state of a body at the start of an analysis. The
conditions describe the initial kinematic and stress or strain states with respect to
the reference configuration used to define the body. In addition, for constitutive
equations with internal variables the initial values of terms which evolve in time
must be given (e.g. initial plastic strain).

The initial conditions for the kinematic state consist of specifying the position and
velocity at some initial time, commonly taken as zero. Accordingly,

xi(X7,0) = ¢;(X7,0) o w;(X;,0) = d}(X;) (10.34)
and
vi(X7,0) = §i(X;7,0) = 07 (X;) (10.35)

are specified at each point in the body.
The initial conditions for stresses are specified as

o;(X7,0) = a0(X;) (10.36)

at each point in the body. Finally, as noted above the internal variables in the stress—
strain relations that evolve in time must have their initial conditions set. For a finite
elastic model, generally there are no internal variables to be set unless initial stress
effects are included.

10.3 Variational description for finite deformation

In order to construct finite element approximations for the solution of finite
deformation problems it is necessary to write the formulation in a Galerkin (weak)
or variational form as illustrated many times previously. Here again we can write
these integral forms in either the reference configuration or in the current configura-
tion. The simplest approach is to start from a reference configuration since here
integrals are all expressed over domains which do not change during the deformation
process and thus are not affected by variation or linearization steps. Later the results
can be transformed and written in terms of the deformed configuration. Using the
reference configuration form variations and linearizations can be carried out in an
identical manner as was done in the small deformation case. Thus, all the steps out-
lined in Chapter 1 immediately can be extended to the finite deformation problem. We
shall discover that the final equations obtained by this approach are very different
from those of the small deformation problem. However, after all derivation steps
are completed a transformation to expressions integrated over the current configura-
tion will yield a form which is nearly identical to the small deformation problem and
thus greatly simplifies the development of the final force and stiffness terms as well as
programming steps.
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To develop a finite element solution to the finite deformation problem we consider
first the case of elasticity as a variational problem. Other material behaviour may be
considered later by substitution of appropriate constitutive expressions for stress and
tangent moduli — identical to the process used in Chapter 3 for the small deformation
problem.

10.3.1 Reference configuration formulation

A variational theorem for finite elasticity may be written in the reference configura-
. 45
tion as

Il = J W(Cpy)dV — Ty (10.37)
Q

in which W(Cj;) is a stored energy function for a hyperelastic material from which the
second Piola—Kirchhoff stress is computed using®

oW ow

Su = dC,,  OE,

(10.38)

The simplest representation of the stored energy function is the Saint-Venant—
Kirchhoff model given by

W(E) =% Dk EryExr (10.39)

where D;;x; are constant elastic moduli defined in a manner similar to the small
deformation ones. Equation (10.38) then gives

Sy = Dy Ext (10.40)

for the stress—strain relation. While this relation is simple it is not adequate to define
the behaviour of elastic finite deformation states. It is useful, however, for the case
where strains are small but displacements are large and we address this use further
in the next chapter. Other models for representing elastic behaviour at large strain
are considered in Sec. 10.7.

The potential for the external work is here assumed to be given by

I, = J U pob\™ dV + J U, T,dS (10.41)
Q

t

where T, denotes specified tractions in the reference configuration and T, is the
traction boundary surface in the reference configuration. Taking the variation of
Eqgs (10.37) and (10.41) we obtain

811 = JQ 16C1; 81y dV — 61l =0 (10.42)
and

6T, = JQ §U; po ™ AV + L §U, T, dS (10.43)

t
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where 6U; is a variation of the reference configuration displacement (i.e. a virtual
displacement) which is arbitrary except at the kinematic boundary condition
locations, I',,, where, for convenience, it vanishes. Since a virtual displacement is an
arbitrary function, satisfaction of the variational equation implies satisfaction of
the balance of linear momentum at each point in the body as well as the traction
boundary conditions. We note that by using Eq. (10.38) and constructing the
variation of Cp;, the first term in the integrand of Eq. (10.42) can be expressed in
alternate forms as

16C1; 81 = 6E; Sy = 6F; Fy Siy (10.44)

where symmetry of S;; has been used. The variation of the deformation gradient may
be expressed directly in terms of the current configuration displacement as

aéu[

§Fy = i
il aXI

= (5ul~y1 (1045)

Using the above results, after integration by parts using Green’s theorem (see
Appendix G of Volume 1), the variational equation may be written as

ol = — JQ ou; [(FiJ S1r) 1+ b po bﬁ’”)} dv + J 6u;[F;y Sy Ny — 6; T;]dS =0

(10.46)
giving the Euler equations of (static) equilibrium in the reference configuration as
(Fiy S17) 1+ it po bﬁm) =Pir+po b§m> =0 (10.47)
and the reference configuration traction boundary condition
Sy FyyNy— 6y Ty = Py Ny — 6, T; =0 (10.48)

The variational equation (10.42) is identical to a Galerkin method and, thus, can be
used directly to formulate problems with constitutive models different from the
hyperelastic behaviour above. In addition, direct use of the variational term (10.43)
permits non-conservative loading forms, such as follower forces or pressures, to be
introduced. We shall address such extensions in Section 10.6.

Matrix form

At this point we can again introduce matrix notation to represent the stress, strain,
and variation of strain. For three-dimensional problems we define the matrix for
the second Piola—Kirchhoff stress as

S=1[Su, Sn. Sy, Sn Sy, Syl (10.49)
and the Green strain as
E=[E;, Epn, Ey, 2Ep, 2By, 2Ey] (10.50)

where, similar to the small strain problem, the shearing components are doubled to
permit the reduction to six components. The variation of the Green strain is similarly
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given by
8E = [6Ey|, OEy, OFEs;, 20Ey, 20Ey, 26Es|" (10.51)

which permits Eq. (10.44) to be written as the matrix relation

(SEIJSL]:(SETS (1052)
The variation of the Green strain is deduced from Eqs (10.13), (10.14) and (10.45) and
written as
1 85”, 8514, 1
0Ey, =3 <0_X1 Fiy Jra—XJFi > :§(5ui,1FiJ + bu; g Fiy) (10.53)

Substitution of Eq. (10.53) into Eq. (10.51) we obtain

Fy 6u;

Fybu;

Fi3bu;4
Fyou;p + Fybu;
Fpou; 3 + Fizbu; »
Fiyou; g + Fiybu 5

SE = (10.54)

as the matrix form of the variation of the Green strain.

Finite element approximation
Using the isoparametric form developed in Chapters 8 and 9 of Volume 1 we
represent the reference configuration coordinates as

X, =S N XF (10.55)

where & are the natural coordinates &, n in two dimensions and &, 7, ¢ in three
dimensions, N, are shape standard functions (see Chapters 8 and 9 of Volume 1),
and Greek symbols are introduced to identify uniquely the finite element nodal
values from other indices. Similarly, we can approximate the displacement field in
each element by

=" N (10.56)

The reference system derivatives are constructed in an identical manner to that
described in Chapter 9 of Volume 1. Thus,

Ui = Nostii' (10.57)

where explicit writing of the sum is omitted and summation convention for « is
again invoked. The derivatives of the shape functions can be established by using
standard routines to which the X}' coordinates of nodes attached to each element
are supplied.
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The deformation gradient and Green strain may now be computed with use of
Eqgs (10.12) and (10.15), respectively. Finally, the variation of the Green strain is
given in matrix form as

Fi1Nq Fy1 Ny i F31 Ng
FiyNo F»Nop F3Nop o
uj
Fi3N,3 Fy3N,3 F33N, 3 »
0E = oty
F\ Nos+FiuNyy FyNop+FpuNyy F3Nyoy+ FypNg o
us
FiuNos+Fi3Nyy FnoNos+FiaNyy FypNys+ FiaNgo
| FisNoi +FiiNogs FusNoi+FNys FisNog+ F3Nys |

=B, 6" (10.58)

where B,, replaces the form previously defined for the small deformation problem as
B, . Expressing the deformation gradient in terms of displacements it is also possible

to split this matrix into two parts as
B, =B, +B\" (10.59)

in which B, is identical to the small deformation strain-displacement matrix and the
remaining non-linear part is given by

U1 Noo +upo Ny
o No3 +uy 3N,
Lu13No, + i Nojs

i uy1 Ng, 1 Uy Ny i uz 1 Ny i T
U2 Ny o Urr Ny u32 Ny
Ui 3Ny 3 U3 Ny 3 Uz 3Ny 3

Uy Noo +uzs Ny
s No3 +uz3 Ny o
U3 N(x.l + U Na,3

uz 1 Noo +u3r Ny
uz3o Ny 3 +u33 Ny o
uz3 Ny +u3 Ny s |

(10.60)

It is immediately evident that BY'" is zero in the reference configuration and therefore
that Bu = B,. We note, however, that in general no advantage results from this split
over the single term expression given in Eq. (10.58).

The variational equation may now be written for the finite element problem by
substituting Eqgs (10.49) and (10.58) into Eq. (10.42) to obtain

ST = (6a,)" (J BlSdV — fﬂ> =0 (10.61)
Q
where the external forces are determined from 611, as
f, = J N,pob™ dV +J N,TdS (10.62)
Q T,

with b" and T the matrix form of the body and traction force vectors, respectively.
Using the d’Alembert principle we can introduce inertial forces through the body
force as

b(m) N b(m) —y = b(m) % (1063)
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where v is the material velocity vector defined in Eq. (10.26). This adds an inertial
term M,4V5 to the variational equation where the mass matrix is given in the
reference configuration by

Q

For the transient problem we can introduce a Newton—Raphson type solution and
replace Eq. (1.24) by

¥, :f—J B'SdV —Mv=0 (10.65)
Q

Here we consider further the Newton—Raphson solution process for a steady-state
problem in which the inertial term Mv is omitted. Extension to transient applications
follows directly from the presentation given in Chapter 1. Applying the linearization
process defined in Eq. (2.9) to Eq. (10.65) [without the inertia force] we obtain the
tangent term
oB" of
—SdV-—=K K K 10.66
o ou o0 Mt Rg + K ( )
where the first term is the material tangent, Ky, in which Dy is the matrix form of the
tangent moduli obtained from the derivative of constitution given in indicial form as

aS >Fw FwW
2 I = 4 = = D[./KL (1067)
and transformed to a matrix Dy (see Chapter 1 and Appendix B, Volume 1).

The second term, K¢, defines a tangent term arising from the non-linear form of
the strain—displacement equations and is often called the geometric stiffness. The
derivation of this term is most easily constructed from the indicial form written as

KT:J ﬁTﬁTBdV+J
Q

[ 6E e 3 Ie
J 0oLy Sy dV did = 55,?J Nos6; Ny Sy dV dil = sif (K7) dit!  (10.68)
0 aﬁf j Q@ ; j ij j
Thus, the geometric part of the tangent matrix is given by
K = G4l (10.69)
where
ng:J Na_IS[JN[,"JdV (1070)
0 :

The last term in Eq. (10.66) is the tangent relating to loading which changes with
deformation (e.g. follower forces, etc.). We assume for the present that the derivative
of the force term f is zero so that Ky vanishes.

10.3.2 Current configuration formulation

The form of the equations related to the reference configuration presented in
the previous section follows from straightforward application of the variational
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procedures and finite element approximation methods introduced previously in this
volume and throughout Volume 1. However, the form of the resulting equations
leads to much more complicated strain—displacement matrices, B, than previously
encountered. To implement such a form it is thus necessary to reprogram completely
all the element routines. We will now show that if the equations given above are trans-
formed to the current configuration a much simpler process results.

The transformations to the current configuration are made in two steps. In the first
step we replace reference configuration terms by quantities related to the current
configuration (e.g. we use Cauchy or Kirchhoff stress). In the second step we convert
integrals over the undeformed body to ones in the current configuration.”

To transform from quantities in the reference configuration to ones in the current
configuration we use the chain rule for differentiation to write

9(-) _ () 0% _9(+)

= = A 10.71
oX;  ox; 0X; ox; " (10.71)
Using this relationship Eq. (10.53) may be transformed to
8y = 5 (8ui; + Suyi) Fig Fyy = b2y Fyg Fy (10.72)

where we have noted that the variation term is identical to the variation of the small
deformation strain—displacement relations by again using the notation'

beyy = 5 (61 + buy ) (10.73)
Equation (10.44) may now be written as

6E[]S]J:6€UFi1EJS[J :651177l :6€l[UI]J (1074)

and Eq. (10.42) as
oIl = J 56,'/‘0','/‘J dVv — 6Hext =0 (1075)
q Ui

The second step is now performed easily by noting the transformation of the volume
element given in Eq. (10.11) to obtain finally

0y dv — 8Tl = 0 (10.76)

where w is the domain in the current configuration.
The external potential Il.,; given in Eq. (10.43) may also be transformed to the
current configuration using Eqs (10.24) and (10.27) to obtain

STy, = J Su; pb™ do + J Su; T, ds (10.77)

Ve

* This latter step need not be done to obtain advantage of the current configuration form of the integrand.
T We note that in finite deformation there is no meaning to ¢ itself; only its variation, increment, or rate can
appear in expressions.
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The computation of the tangent matrix can similarly be transformed to the current
configuration. The first term given in Eq. (10.66) is deduced from

JO 0E;; Dyjgp dEg, AV = Jﬂ 55y’ Fy FjJ Dy Feg Fip degg dV

= J 6Ei/di/k1 d€k1 dv (1078)

where
J dijig = Fiy Fiy Fix Fi Dk (10.79)

defines the moduli in the current configuration in terms of quantities in the reference
state.

Finally, the geometric stiffness term in Eq. (10.66) may be written in the current
configuration by transforming Eq. (10.70) to obtain

Gop = J NoySyyNgydV = J N,io;Ngjdv (10.80)
‘ o Ve : y ,

Thus, we obtain a form for the finite deformation problem which is identical to that of
the small deformation problem except that a geometric stiffness term is added and
integrals and derivatives are to be computed in the deformed configuration. Of
course, another difference is the form of the constitutive equations which need to
be given in an admissible finite deformation form.

Finite element formulation

The current configurational form of the variational problem is easily implemented in
a finite element solution process. To obtain the shape functions and their derivatives it
is necessary first to obtain the deformed Cartesian coordinates x; by using Eq. (10.4).
After this step standard shape function routines can be used to compute the
derivatives of shape functions, N, /0x;. The terms in the variational equation can
then be expressed in a form which is identical to that of the small deformation
problem. Accordingly, the stress term is written as

J 65,-jal~l-dv:6ﬁTJ B' ¢ dv (10.81)
w w
where B is identical to the form of the small deformation strain—displacement matrix,
and Cauchy stress is transformed to matrix form as
T
6=[oy, 0n, 03, O, Oxp, 03] (10.82)

and involves only six independent components.
The residual for the static problem of a Newton—Raphson solution process is now
given by

\IJI:f—J B'odv=10 (10.83)

The linearization step of the Newton—Raphson solution process is performed by
computing the tangent stiffness in matrix form. Transforming Eq. (10.78) to matrix
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form using the relations defined in Chapter 1, the material tangent is given by
Ky = J B. DB, dv (10.84)

where now the material moduli Dt are deduced by transforming the moduli in the
current configuration, d;z;, to matrix form. The form for G5 in Eq. (10.80) may be
substituted into Eq. (10.69) to obtain the geometric tangent stiffness matrix. Thus,
the total tangent matrix for the steady-state problem in the current configuration is
given by

Ko — J BID; By dv+ Gyl (10.85)

w

and a Newton—Raphson iterate consists in solving

Kp dﬁ:f—J B o dv (10.86)

w

where the external force is obtained from Eq. (10.77) as

f, = J N,pb" dv +J N, tds (10.87)
w Y
We can also transform the inertial force to a current configuration form by substi-
tuting Eqs (10.11) and (10.27) into Eq. (10.64) to obtain

MQQZJ NaPONﬂdVI:J NapNgd’UI (1088)
! 0 /

w

and thus, for the transient problem, the residual becomes
\Illzf—J B'odv—Mv=0 (10.89)

Linearization of this term is identical to the small deformation problem and is not
given here.

The development of displacement-based finite element models for two- and three-
dimensional problems may be performed easily merely by adding a few modifications
to a standard linear form. These modifications include the following steps.

1. Use current configuration coordinates x; to compute shape functions and their
derivatives. These are computed at nodes by adding current values of displace-
ments i to reference configuration nodal coordinates X7

2. Add a geometric stiffness matrix to the usual stiffness matrix as indicated in

Eq. (10.85).

Use the appropriate material constitution for a finite deformation model.

4. Solve the problem by means of an appropriate strategy for non-linear problems.

W

It should be noted that the presence of the geometric stiffness and non-linear
material behaviour may result in a tangent matrix which is no longer always positive
definite (indeed, we shall discuss stability problems in the next chapter and this is a
class of problems for which the tangent matrix can become singular as a result of
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the geometric stiffness term alone). Furthermore, use of displacement-based elements
in finite deformation can lead to locking if the material has internal constraints, such
as in nearly incompressible behaviour. It is then necessary again to resort to a mixed
formulation to avoid such locking. The advantage of a properly constructed mixed
form is that it may be used with equal accuracy for both the nearly incompressible
problem as well as any compressible problem (see Chapter 12 of Volume 1).

10.4 A three-field mixed finite deformation formulation

A three-field, mixed variational form for the finite deformation hyperelastic problem
is given by

M= jg[W(ém (T — O] dV — T (10.90)

where p is a mixed pressure in the current (deformed) configuration, J is the
determinant of the deformation gradient Fj;, 6 is the volume in the current
configuration for a unit volume in the reference state, W is the stored energy function
expressed in terms of a (mixed) right Cauchy—Green deformation tensor C;;, and I1,
is the functional for the body loading and boundary terms given in Eq. (10.41). This
form of the variational problem has been used for problems formulated in principal
stretches.® Here we use the form without referring to the specific structure of the
stored energy function. In particular we wish to admit constitutive forms in which
the volumetric and deviatoric parts are not split as in reference 6.
The (mixed) right Green deformation tensor is expressed as

Cry = FyFy (10.91)
where
B : o\!/3
Fa=FjE} = 0" 0) 05 = (3) F (1092

where Fj; is a volumetric and F,-‘f a deviatoric part. We also note that det F,“,’ =1 as
required for a deviatoric (constant volume) state.
The variation of Eq. (10.90) is given by

51 — J [L6C,, S, + p(J —0) + (87 — 80)p] dV — 8T, (10.93)
Q
where a second Piola—Kirchhoff stress based on the mixed deformation tensor is
defined as
= ow oW _ _
Sy=2—=—= h E;,=1(Cy-6 10.94
1J ac,, Ok, where IJ =3 (Cy ) ( )
Using Eq. (10.91) the variation of the mixed deformation tensor is given by
6Cy = OFy Fyy + 6F; Fy (10.95)

and thus noting that®>*
6J = JFj;' 6F
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the first term of the integrand in Eq. (10.93) formally may be expanded as
6Cry Sy = 6Fy Fiy Sy

160 . - o 0\ 1 0o1s -
=3 gFiIFiJSU‘f' 7 6Fi1_§5P}JFiJFi Fiy Siy (10.96)

This expression again may be greatly simplified by defining current configuration
Kirchhoff and Cauchy stresses based on the mixed deformation gradient as

Ty = Fy Siy Fyy = 05 (10.97)
Also, we note from Eq. (10.71) that
6F Fyy' = by Fiy Fiy' = 6uj 8 = 6uy (10.98)
is the divergence of the variation in displacement. Thus, Eq. (10.96) simplifies to

- 1 /60 _ _ 1460 _ oou; (1 _ _
6C]J S]J = § <0 — (514,,) Tii + 61/1,‘/7',/ = § ? Tk + Wl <7',/ - g 6[/Tkk> (1099)
J
Substituting relations deduced above into Eq. (10.93) and noting symmetry of the
Kirchhoff stress, a formulation in terms of quantities related to the deformed position
may be written as

Q Q
+J §p(J — 6)dV — 811, = 0 (10.100)
Q

where p = 7;;/3 defines a mean stress based on the Cauchy stress deduced according
to Eq. (10.97). This variational equation may be transformed to integrals over the
current configuration by replacing dV by dv/J; however, this step is not a necessary
transformation to make the relations valid.

Finite elements: matrix notation
The finite element approximation of the mixed variational form is again given using
deformation measures and stresses related to the current configuration. The develop-
ment is very similar to that presented in Chapter 1 for the small deformation case.
The reference coordinate and displacement fields are approximated by isopara-
metric interpolations as indicated in Eqs (10.55) and (10.56), respectively. These are
used to compute the deformation gradient by means of Eqs (10.12) and (10.57).
The pressure and volume are interpolated in a manner which is identical to the
small deformation case as

p=N,p and 0 =N,0
and for quadrilateral and brick elements are taken to be discontinuous between

elements. A similar scheme with p being C, continuous can be used to develop
triangular and tetrahedral elements.”
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Using the above approximation, Eq. (10.100) may be expressed in matrix form as
ST = da’ J B'60dV + 6p" J Ny (J —0)dV
Q Q
+59TJ Ng (p — p)dV + 611y (10.101)
Q

In this form of the finite deformation problem B again is identical to the small
deformation strain—displacement matrix and a modified mixed stress is defined as

J
6=6+(p—p)m where [5:51) (10.102)
Using these interpolations Eq. (10.101) gives the equations
P+Mv=f
P,—Ky,p=0 (10.103)
K0 +E, =0
where the arrays are given as
P:J B'g0dV P[,:§J Nj60dV
. . (10.104)
Ky, = J NyN,dV =K, E;= J Ny JdV
Q Q

and force f and mass M are identical to the terms appearing in the displacement model
presented previously.

We can observe that the mixed model reduces to the displacement form if # = J and
p = p at every point in the element. This would occur if our approximations for # and
p contained all the terms appearing in results computed from deformations and, thus,
again establishes the principle of limitation.® Moreover, if this occurred, any locking
tendency in the displacement form would again occur in the mixed approach also.

To obtain a formulation free of locking it is again necessary to select approximations
for pressure and volume which satisfy the mixed patch test count conditions as
described in Chapters 11 and 12 of Volume 1. Here, to approximate p and 6 in each
element we assume that Ny = N, and for four-noded quadrilateral and eight-noded
brick elements of linear order use constant (unit) interpolation. In nine-noded quadri-
lateral and 27-noded brick elements of quadratic order we assume linear interpolation.
Linear interpolation in &, n,  or X7, X», X5 can be used; however, x|, x,, x3 should not
be used since then the interpolation becomes non-linear (x; depend on ;) and the solu-
tion complexity is greatly increased from that indicated above.

The second and third expressions in Eqs (10.103) are linear in p and 0, respectively,
and also are completely formed in a single element. Moreover, the coefficient matrix

K,y = Ky, is symmetric positive definite when Ny = N,,. Thus, a partial solution can
be achieved in each element as
~ -1
pP= Kg P
. j’l ! (10.105)
0 - Kp9 EJ
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An explicit method in time (see Chapter 18, Volume 1) may be employed to solve
the momentum equation: as was indeed used to solve examples shown at the end of
Chapter 1. However, here we only consider further an implicit scheme which is
applicable to either transient or static problems (see Chapters 1 and 2). A Newton—
Raphson scheme may be employed to solve Eq. (10.101). To construct the tangent
matrix Kt it is necessary to linearize Eq. (10.93). In indicial form, the Newton—Raph-
son linearization may be assembled as

d(6T1) = JQ [6Cpy Dyyx dCrp + L d(8Cyy) Spy ] AV + JQ pd(8J)dV

(10.106)
+ J Sp (dJ — do) dV + J dp (87 — 80) AV + d(6T1,y,)
Q Q

where dCg;, dp, etc., denote incremental quantities and material tangent moduli in
the reference configuration are denoted by

N -
2 aC'[I(JL = DIJKL (10107)

The above integrals may also be expressed in quantities terms of current configura-
tion terms in an identical manner as for the displacement model presented in
Sec. 10.3.2. In this case the reference configuration moduli are transformed to the cur-
rent configuration using

dijir = gFiIF}JFkKFlLDIJKL (10.108)

Using standard transformations from indicial to matrix form the moduli for the
current configuration may be written in matrix form as Dr.

We can now write Eq. (10.106) in matrix form and obtain the set of equations which
determine the parameters du, d0 and dp as

Kuu Ku9 Kup du f—P
Ko, Ky —Kp|{d®p=¢ 0 (10.109)
K, Ky, 0 dp 0

where

K,, = J B'D, BOdV + K, K, = J B'D,N,dV =K},
Q Q

. (10.110)
K, = J B'mN,JdV =K}, Ky= J N;D»N, i
Q Q
in which
Dy =1,Drl, —3(me; +6,m") +2(p— p)lg — (3p — p)mm’
D, =!I,Drm+2q6,=D; (10.111)

Dzz = %mTDTm —%ﬁ
where I is as defined in Eq. (1.37). Note also that the right-hand side is zero in the

second and third rows of Eq. (10.109) since the solution for pressure and volume
parameters was determined exactly using Eq. (10.105).
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The geometric tangent term is given by
KY = G5l where G,5= J N, ;G;Ng; dV (10.112)
‘ 0 .

A solution to Eq. (10.109) may be formed by solving the third and second rows as

d0 = K;, K, du

pu
dp = Ky, Ky, du + Kj, Ky d0 (10.113)
= (Kg,) Ko, + Kj, KoK, K,,) dii
and substituting the result into the first row to obtain

Kr di = [K,, + KK,/ K, + K, K, Ky, + K, K, Ky K, K, | dii = f— P

up
(10.114)

up

This result is obtained by inverting only the symmetric positive definite matrix K,
which we also note is independent of any specific constitutive model.

10.5 A mixed—enhanced finite deformation formulation

An alternative method to that just discussed is the fully mixed method in which strain
approximations are enhanced. The key idea of the mixed—enhanced formulation is the
parameterization of the deformation gradient in terms of a mixed and an enhanced
deformation gradient from which a consistent formulation is derived. This methodol-
ogy allows for a formulation which has standard-order quadrature and variationally
recoverable stresses, hence circumventing difficulties which arise in other enhanced
strain methods.” '

There is no need to separate any deformation gradient terms into deviatoric and
mean parts as was necessary for the mixed approach discussed in the previous section.
The mixed—enhanced formulation discussed here uses a three-field variational form
for finite deformation hyperelasticity expressed as

H:J [W(Fiy) + Py(Fy — Fyp)| dV — Tley, (10.115)
Q

where Fj; is the deformation gradient, Fj; is the mixed deformation gradient, P;; is the
mixed first Piola—Kirchhoff stress, W is an objective stored energy function in terms
of F;;, and Iy, is the loading term given by Eq. (10.41).

The stationary point of IT is obtained by setting to zero the first variation of
Eq. (10.115) with respect to the three independent fields. Accordingly,

A . w A N .
6H:J |:(SF[[PI‘1+($F'[[<§PA‘P”> +6Pi1(F‘iliFil) dV*é‘Hext:O (10116)
Q il

where F,; and P, are mixed variables to be approximated directly. The reader will
note that we now use the deformation gradient directly instead of the usual Cyy,
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E;;, or b; symmetric forms. We often will use constitutive models which are expressed
in these symmetric quantities; however, we note that they are also implicitly functions
of the deformation gradient through the definitions given in Sec. 10.2. Once again, at
this point we may substitute a first Piola—Kirchhoff stress from any constitutive
model in place of the derivative of the stored energy function W /OF; in Eq.
(10.116). Thus, the present form can be used in a general context.

Finite element approximations to the mixed deformation gradient and first Piola—
Kirchhoff stress are constructed directly in terms of local coordinates of the parent
element using standard tensor transformation concepts. Accordingly, we take

Fiy = FiuJoads1 Fap(8) (10.117)

and

Py = Fii JoaJ5 Pos(®) (10.118)
where & denotes the natural coordinates &,7n,(, the Greek subscripts are now
associated with the natural coordinates (i.e. they are not here the finite element
node numbers), and P, 3 and F .4 are the first Piola—Kirchhoff stress and deformation
gradient approximations in the isoparametric coordinate space, respectively.” The
arrays J,, and F;; used above are average quantities over the element volume, €2,.
The average quantity J, 4 is defined as

ox,
9,

where J,,4 is the standard Jacobian matrix as defined in Eq. (9.10) of Volume 1 (but
now written for the reference coordinates), and Fj; is defined as

_ 1
F :7J F,dv (10.120)
Q. Jo,

Ja _71 JaAdV and J(:zA: (10119)

e

The above form of approximation will ensure direct inclusion of constant states as
well as minimize the order of quadrature needed to evaluate the finite element
arrays and eliminate some sensitivity associated with initially distorted elements.

The form given in Eqs (10.117) and (10.118) are constructed so that the energy term
of the physical and isoparametric pairs are equal. Accordingly, we observe that

Paﬂfaﬁ:ﬁilﬁil (10121)

This greatly simplifies the integrations needed to construct the terms in Eq. (10.116).
To construct the approximations we note that the tensor transformations for the
mixed deformation gradient may be written in matrix form as

F=AF (10.122)
and

P=A"'P (10.123)

* Note the resulting transformed arrays are objective under a superposed rigid body motion.*
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Table 10.1 Matrix—tensor transformation for the nine-component form

Row or column 1 2 3 4 5 6 7 8 9
iora 1 2 3 1 2 3 2 3 1
lorf 1 2 3 2 3 1 1 2

where A is a transformation to matrix form of the fourth-rank tensor given as
Aitop = FigJoaJsr (10.124)

The ordering for the matrix—tensor transformation for all the variables is described in
Table 10.1.
The approximations for the mixed deformation gradient may now be written as

o +]1.A[E1<a>?+Ez<a>aJ (10.125)

and
P=p"+A"[E (&P (10.126)

where j = detJ, 4 and E;, E, define the functions to be selected in terms of natural
coordinates. The functions suggested in reference 15 are given in Table 10.2. The
terms B° and y° ensure that constant stress and strain are available in the element.

The above construction is similar to that used in Sec. 11.4.4 of Volume 1 to con-
struct the Pian—Sumihara plane elastic element'® and also in Sec. 5.6 to construct
the shear and bubble interpolation for the thick-plate element Q4S2B2.

The enhanced parameters a are added to the normal strains in Table 10.2 such that
the resulting strain components are complete polynomials in natural coordinates. This
is done to provide the necessary equations to enforce an incompressibility constraint
without loss of rank in the resulting finite element arrays. In addition, the enhanced
parameters improve coarse mesh accuracy in bending dominated regimes.

Finite elements: matrix notation

By isolating the equations associated with the first variation of the first Piola—
Kirchhoff stress tensor 6P in Eq. (10.116) some of the element parameters of the

Table 10.2 Three-dimensional interpolations

[0} ﬁ El v Ez(l

1 1 oMt &M 667 §rag + 160 +£1&03
2 2 E1va + &5 + 81637 S04 + 6805 + 1605
3 3 &1+ &+ 6&7 &ag +&H8a5 + 1609
1 2 &0 0

2 3 &1z 0

3 1 714 0

2 1 &7 0

3 2 &3 0

1 3 &M 0
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mixed—enhanced deformation gradient F may be obtained as

1 _
yoz—J FdV =F (10.127)
Q. Jo,
and
—1 _
y = (J E'E, dD> J EfA"'(F-F)dV (10.128)
| Q,

where the box denotes integration over the element region defined by the isopara-
metric coordinates &;. We note that the construction for E; and E, are such that
integrals have the property

J EldD:J Ede:J E{E,d0d=0
O O [m]

This greatly simplifies the construction of the partial solution given above.
Use of the above definitions for F and P also makes the second term in the
integrand of Eq. (10.115) zero, hence the modified functional II is expressed as

ﬂzj W (Fy) dV 4 Ty (10.129)
Q

The stationary condition of II yields a reduced set of nonlinear equations, in terms
of the nodal displacements, u, and the enhanced parameters, a, expressed as

. ow - P (u,a)—f
Sl = | == 6F,;dV — 6l = { 6u' oa" { e }:0 10.130
JQ 6F,-1 ! ‘ { ou ba } Penh(ﬁ, &) ( )

where Py, is the internal force vector, P, is the enhanced force vector, and f is the
usual force vector computed from II.,;. Noting that the variations éu and éa in
Eq. (10.130) are arbitrary the finite element residual vectors are given by

U, =f— P (i,6) =0 (10.131)

¥, =—Pep(un,a) =0 (10.132)

A solution to these equations may now be constructed in the standard manner
discussed in Chapter 2. Using a Newton—Raphson scheme to linearize Eq. (10.130)
we obtain

2
A(sTT) = J 5, 2 ap, + W aeskav
Q 8Fi,8FjJ ' 8Fi1

KMLI KL{O/
={s6u" sa"}| '

au KO[O(

du 10.133
{dd} (10.133)

where K, etc., are obtained by evaluating all the terms in the integrals in a standard
manner, and the process is by now so familiar to the reader we leave it as an
exercise.
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Using Eqgs (10.131)—(10.133) we obtain the system of equations

[Ke K]{du} (= (10,134
K(¥U K(l(k da W(!

where we note that the parameters a are associated with individual elements. We have
encountered such forms in many previous situations (e.g. bubble modes in plates) and
used static condensation'’ to perform a partial solution at the element level. Here the
situation is slightly different in that the equations are non-linear. Thus, it is necessary
to use the static condensation process in an iterative manner. Accordingly, given a

solution u for some iterate in a Newton—Raphson process we can isolate the part
for each a and consider a local solution for the equation set

da® =K e (10.135)
Iteration continues until ¥, is zero with updates
aktl =a® 4 gg® (10.136)

which is performed on each element separately.
Utilizing the final solution from Eq. (10.135) an equivalent displacement model
involving only the nodal displacement parameters is obtained as

Krdi=19, (10.137)

where

0 _ e PSS
K"(l"> = [Kuu - Kua (Kaa) Kau]

The system of Eq. (10.137) is solved and the nodal displacements are updated in the

usual manner for any displacement problem (see Chapter 1). Additional details and

many example solutions using the above formulation, and its specialization to

small deformations, may be found in references 15 and 18.

10.6 Forces dependent on deformation — pressure loads

In the derivations presented in the previous sections it was assumed that the forces f
were not themselves dependent on the deformation. In some instances this is not true.
For instance, pressure loads on a deforming structure are in this category. Aero-
dynamic forces are an example of such pressure loads and can induce flutter.

If forces vary with displacement then in relation (10.66) the variation of the forces
with respect to the displacements has to be considered. This leads to the introduction
of the load correction matrix Ky as originally suggested by Oden' and Hibbitt er al.?

Here we consider the case where pressure acts on the current configuration and
remains normal throughout the deformation history. If the pressure is given by p
then the surface traction term in 611, is given by

J 6u,«f,~ds:J Su; p; ds (10.138)
Yt v

Tt
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where n; are the direction cosines of an outward pointing normal to the deformed
surface. The computation of the nodal forces and tangent matrix terms is most
conveniently computed by transforming the above expression to the surface approxi-
mated by finite elements.”! =% In this case we have the approximation to Eq. (10.138)
for a three-dimensional problem given in matrix notation by (where once again we use
Greek subscripts to denote the finite element node numbers)

1l
L bu;t; ds = éu,, Jil Jil N,p(&,n) [(N%XV) X (NMX{;)] d¢dn (10.139)

where &, n are natural coordinates of a two-dimensional finite element surface
interpolation, p(§,n) is a specified nodal pressure at each point on the surface, x,
are nodal coordinates of the deformed surface, and we have used the relation
transforming surface area given in Sec. 7.5 of Volume 1. A cross-product may be
written in the alternate forms

X, X X5 = X, X5 = —XsX, = }ng7 (10.140)
where here X denotes a skew symmetric matrix given as
0 —X3 X
X3 0 —x (10.141)

—X) X1 0

L
I

Using the above relations the nodal forces for the ‘follower’ surface loading are given
by

1 1
b = L J NapP(§1) Nyg Noy Xy X5 d€dn (10.142)

Since the nodal forces involve the nodal coordinates in the current configuration
explicitly, it is necessary to compute a tangent matrix K; for use in a Newton—Raph-
son solution scheme. Linearizing Eq. (10.142) we obtain the tangent as

of 1 1
aff _ a _ ~ .
KL - _87“3 - J71 J | Nap(gv 77) [NH,{NA/W - N'y,fNﬁ,n] Xq’ dfdﬁ (10143)
In general the tangent expression is unsymmetric; however, if the pressure loading is
applied over a closed surface and is constant the final assembled terms are symmetric.

For cases where the pressure varies over the surface the pressure may be computed
by using an interpolation

in which p,, are values of the known pressure at the nodes. Of course, these could also
arise from solution of a problem which generates pressures on the contiguous surfaces
and thus lead to the need to solve a coupled problem as discussed in Chapter 19 of
Volume 1.

The form for two-dimensional plane problems simplifies considerably since in this
case Eq. (10.139) becomes

1
J Su; 1; ds = 6, J Nop(&) (N, ex,) x e3dE (10.145)
Y -1
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where ¢ is a one-dimensional natural coordinate for the surface side, e; is the unit
vector normal to the plane of deformation (which is constant), and p(§) is now the
force per unit length of surface side. For this case the nodal forces for the follower
pressure load are given explicitly by

f, = Jl N p(6) { T } de (10.146)

Xl’g

where x; ¢ are derivatives computed from the one-dimensional finite element inter-
polation used to approximate the element side. The case for axisymmetry involves
additional terms and the reader is referred to reference 21 for details.

10.7 Material constitution for finite deformation

In order to complete any finite element development it is necessary to describe how
the material behaves when subjected to deformation or deformation histories. In
the discussion above we considered elastic behaviour without introducing details
on how to model specific material behaviour. Clearly, restriction to elastic behaviour
is inadequate to model the behaviour of many engineering materials as we have
already shown in many previous applications. The modelling of engineering materials
at finite strain is a subject of much research and any complete summary on the state of
the art is clearly outside the scope of what can be presented here. In this chapter we
present only some classical methods which may be used to model elastic and elasto-
plastic type behaviours. The reader is directed to literature for details on other con-
stitutive models (e.g. see references 3 and 24).

We first consider some methods which may be used to describe the behaviour of
isotropic elastic materials which undergo finite deformation. In this section we restrict
attention to those materials in which a stored energy function is used. Later we will
extend this to permit the use of plasticity models and show that much of the material
presented in Chapter 3 is here again useful. Finally, to permit the modelling of
materials which are not isotropic or cannot be expressed as an extension to elastic
behaviour (e.g. generalized plasticity models of Chapter 3) we introduce a rate
form — here again many options are possible.

10.7.1 Isotropic elasticity — formulation in invariants

We consider a finite deformation form for hyperelasticity in which a stored energy
density function, W, is used to compute stresses. For a stored energy density
expressed in terms of right Cauchy—Green deformation tensor, C;;, the second
Piola—Kirchhoff stress is computed by using Eq. (10.38). Through standard
transformation we can also obtain the Kirchhoff stress as®~

ow

. =2h, ——
T’J b,k abk/

(10.147)

and thus, by using Eq. (10.19), also obtain directly the Cauchy stress.
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For an isotropic material the stored energy density depends only on three
invariants of the deformation. Here we consider the three invariants (noting they
also are equal to those for b;;) expressed as>?

I = Cgx = by (10.148)
I =% (I" = Cx Crg) =3 (I = buby) (10.149)

and
III = det Cg; = det by, =J> where J =det Fy, (10.150)

and write the strain energy density as
W(Ck) = W(by) = W(I,11,J) (10.151)

where we select J instead of /17 as the measure of the volume change. Thus, the second
Piola—Kirchhoff stress is computed as

ow oI oW ol oW dJ

N add e A 10.152
Su=2\%1 ac, T ac, T ar ac, (10.152)
The derivatives of the invariants may be evaluated as (see Appendix A)
ol oIl oJ
—— =6 ——=16,-C ——=1ic 10.153
ac, v ac;, 1 s ac, 27t ( )
Thus, the stress is given by
ow
ol
_ ow
Sw=2[6y  (oy = Cuy) 37C0 1 o (10.154)
ow
oJ

The second Piola—Kirchhoff stress may be transformed to the Cauchy stress by using
Eq. (10.20), and gives

ow
oI
ow
oIl
ow
aJ

2
by (Iby = binbu) 5J6;]

; (10.155)

0jj =

Use of a Newton—Raphson type solution process requires computation of the elastic
moduli for the finite elasticity model. The elastic moduli with respect to the reference
configuration are deduced from>*

Fw Sy,
0C0Ck,  ~ 0Cky

DIJKL:4 (10156)
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Using Eq. (10.154) the general form for the elastic moduli of an isotropic material is
obtained from

oW W W]
2
(ZI 612811 8§8J .
.| 2w w Pw
Dyxr =416, (Is,—Cp), Lucy 16 — C
1IJKL [ 1J ( 1J IJ) 2 1J ] allal 8112 8[[8] ( 1KL 71KL)
>FwW W W 2 Cxe
LoJor  oJo11 9> |
ow
1 —1 1 1 oIl
+ [6176k — 5(51K51L +0.65x), J[Cry Cxr — 2Cpkel] oW (10.157)
oJ
where
Ciike =5 [CIk Cit + Cii! Crg] (10.158)

The spatial elasticities related to the Cauchy stress are obtained by the push forward
transformation

Jdijy = Fiy Fiy Feg Fi Dk (10.159)

which, applied to Eq. (10.157), gives
(oW W W]
or*  9Ioll  d1dJ bus

2 2 .
W load 4 oW (Ibkl — bkm bml)
olal  oIr*  dlldJ

Jdi/‘k/:4[bijv (Ibi}'_bimbmj)v %J(Sl}]

Lys
*;w Fw Pw 20
LoJoI 0OJOII  9J?* |
oI
+ [ by — 5 (bucbi + buby), T [8ra6k — 2T ] | o (10.160)
o
where
Ly =3 [656 + 6ubc] (10.161)

The above expressions describe completely the necessary equations to construct a
finite element model for any isotropic hyperelastic material. All that remains is to
select a specific form for the stored energy function W. Here, many options exist
and we include below only a very simple model. For others the reader is referred to
literature on the subject.
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Example: compressible neo-Hookean material
As an example, we consider the case of a neo-Hookean material® that includes a
compressibility effect. The stored energy density is expressed as

W(IJ)=p(I-3-2InJ)+ix( - 1) (10.162)

where the material constants A and p are selected to give the same response in small
deformations as a linear elastic material using Lamé parameters.® Substitution into
Eq. (10.154) gives

Sy =py—CY+XJ(J-1)C) (10.163)
which may be transformed to give the Cauchy stress
W

For the neo-Hookean model the material moduli with respect to the reference
configuration are given as

Dk = AN (2J — 1) Cii' Cxl +2[u— A (J — D] Cike (10.165)

Transformation to spatial configuration moduli gives

[/

Ay = N(2J — 1)6,-]-6,(,—5-2{'[;—)\(J— 1)} Ty (10.166)

We note that when J ~ 1 the small deformation result
dijir = Nojjors + 2 uZ iy (10.167)

ij
is obtained and thus matches the usual linear elastic relations. This permits the finite
deformation formulation to be used directly for analyses in which the small strain
assumptions hold as well as for situations in which deformations are large. The
above model may also be used with the mixed forms described above for situations
where the ratio A\/p is large (i.e. nearly incompressible behaviour). Indeed this was
an early use of the model.

10.7.2 Isotropic elasticity - formulation in principal stretches

Other forms of elastic constitutive equations may be introduced by using appropriate
expansions of the stored energy density function. As an alternative, an elastic formu-
lation expressed in terms of principal stretches (which are the square root of the
eigenvalues of Cy; or b;) may be introduced. This approach has been presented by
Ogden” and by Simo and Taylor.®

We first consider a change of coordinates given by (see Appendix B, Volume 1)

Xi = Npti X (10.168)

where A,,;; are direction cosines between the two Cartesian systems. The transforma-

tion equations for a second-rank tensor, say b;;, may then be written in the form

b[j = Am’ibm’n’ An’j (10169)
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To compute specific relations for the transformation array we consider the solution of
the eigenproblem

big" =4 b n=123 with ¢ g =6, (10.170)

where b, are the principal values of b;, and qE”) are direction cosines for the principal
directions. The principal values of b;; are equal to the square of the principal stretches,

A, that is,
by =\ (10.171)
If we assign the direction cosines in the transformation equation (10.169) as
Awi=q)" (10.172)

the spectral representation of the deformation tensor results and may be expressed as

Z)\qu (10.173)

m

An advantage of a spectral form is that other forms of the tensor may easily be
represented. For example,

bixby; = Z)‘m g\" ‘n and by ka g\" ‘m (10.174)

Also, we note that an identity tensor may be represented as

s=> q"q" (10.175)

m

From Eq. (10.155) we can immediately observe that Cauchy and Kirchhoff stresses
have the same principal directions as the left Cauchy—Green tensor. Thus, for
example, the Kirchhoff stress has the representation

=S 7r.q"q" (10.176)

where 7, denote principal values.
If we now represent the stored energy function in terms of principal stretch values
as w(A, Ay, A3) the principal values of the Kirchhoff stress may be deduced from>*?¢

ow
O\,
The reader is referred to the literature for a more general discussion on formulations
in principal stretches for use in general elasticity problems.®?*?® Here we wish to con-
sider one form which is useful to develop solution algorithms for finite elasto-plastic

behaviour of isotropic materials in which elastic strains are quite small. Such a form is
useful, for example, in modelling metal plasticity.

Tm = )‘m

(10.177)

Logarithmic principal stretch form
A particularly simple result is obtained by writing the stored energy function in terms
of logarithmic principal stretches. Accordingly, we take

WAL, Ao, A3) = w(ep,ey,63) where ¢, =log(),) (10.178)
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From Eq. (10.177) it follows that

ow
e,

(10.179)

Tm =

which is now identical to the form from linear elasticity, but expressed in principal

directions. It also follows that the elastic moduli may be written as***® (summation
convention is not used to write this expression)
ahs (m) (m) (n) (n)
Jdi/‘kl Z Z Con — 2Tn1 mn]q q] qkn q[n
° (m) () (m) (n) (n) (m)
5 Z ngn 0" a"q” +q" 4" 4 ¢/ (10.180)
m=l
where
A= Ty
5 7_177 n Tn m , Am # )\n
o d A = N (10.181)
Com = =——— an = .
mn 86”185’1 gl?‘l}’l 8(7"77 o 7_”)
7) )\I’” = >\11

agm

In practice the equal root form is used whenever differences are less than a small tol-
erance (say 107%).
Use of a quadratic form for w given by

w=1(K-1G)e + e+ +G [ + 6 +¢3] (10.182)

yields principal Kirchhoff stresses given by

7 K+3G K—-3G K—-3G] (¢
no=|K-3G K+%G K-3G|{ & (10.183)
7 K-3G K-3G K+3G| |«

in which the 3 x 3 elasticity matrix is given by a constant coefficient matrix which is
identical to the usual linear elastic expression in terms of bulk and shear moduli.
We also note that when roots are equal

8(7_/11 B Tn)

G (K +4G) ~ (K ~36) =26 (10.184)

which defines the usual shear modulus form in isotropic linear elasticity.

10.7.3 Plasticity models

For isotropic materials, the modelling of elasto-plastic behaviour in which the
total deformations are large may be performed by an extension of a hyperelastic
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formulation. In this case the deformation gradient is decomposed in a product form

(instead of the additive form assumed in Chapter 3) written as>’ %

where Ffj is the elastic part and F}’I the plastic part. The deformation picture is often
shown as three parts, a reference state, a deformed state, and an intermediate state.
The intermediate state is assumed to be the state of a point in a stress-free condition.”
From this decomposition deformation tensors may be defined as

by =FiFse and  C) =F F? (10.186)

which when combined with Eq. (10.185) give the alternate representation
b = Fi (C) ™' Fy (10.187)

An incremental setting may now be established that obtains a solution for a time
1,41 given the state at time ¢,. The steps to establish the algorithm are too lengthy
to include here and the interested reader is referred to literature for details.>**3%-!

The components (b7), denote values of the converged elastic deformation tensor at
time 7,. We assume at the start of a new load step a trial value of the elastic tensor is
determined from

51 =ik B S (10.188)
where an incremental deformation gradient is computed as
fi = (Fix)us1 (Fi ) (10.189)
A spectral representation of the trial tensor is then determined by using Eq. (10.173)
giving
B i1 =D Ae)ni g g™ (10.190)
m

Owing to isotropy qf.”’)*" can be shown to equal the final directions ¢

Trial logarithmic strains are computed as

(m) 24

i

€

(Em)nt1 = 108(A5)n 1 (10.191)

and used with the stored energy function W (bj) to compute trial values of the
principal Kirchhoff stress (7), 1. This may be used in conjunction with the return
map algorithm (see Section 3.4.2) and a yield function written in principal stresses
T,, to compute a final stress state and any internal hardening variables. This part of
the algorithm is identical to the small strain form and needs no additional description
except to emphasize that only the normal stress is included in the calculation of yield
and flow directions. We note in particular that any of the yield functions for isotropic
materials which we discussed in Chapter 3 may be used. The use of the return map
algorithm also yields the consistent elasto-plastic tangent in principal space which
can be transformed by means of Eq. (10.180) for subsequent use in the finite element
matrix form.

*The intermediate state is not a configuration, as it is generally discontinuous across interfaces between
elastic and inelastic response.



Material constitution for finite deformation 345

The last step in the algorithm is to compute the final elastic deformation tensor.
This is accomplished from the spectral form and final elastic logarithmic strains
resulting from the return map solution as

3
(B5)ni1 = 3 expR(e5)nrila” g (10.192)

m=1

The advantages of the above algorithm are numerous. The form again permits a
consistent linearization of the algorithm resulting in optimal performance when
used with the Newton—Raphson solution scheme. Most important, all the steps
previously developed for the small deformation case are here used. For example,
although not discussed here, extension to viscoplastic and generalized plastic forms
for isotropic materials is again given by results contained in Secs 3.6.2 and 3.9. The
primary difficulty is an inability to treat materials which are anisotropic. Here
recourse to a rate form of the constitutive equation is possible, as discussed next.

10.7.4 Rate constitutive models

The construction of a rate form for elastic constitutive equations deduced from a
stored energy function is easily performed in the reference configuration by taking
a time derivative of Eq. (10.38), which gives

S = Dyxi Exe (10.193)

where, as before, Dk, are moduli given by Eq. (10.156). The above result follows
naturally from the notion of a derivative since

Sy(t+n) — Sy
n

Such a definition is clearly not appropriate for the Cauchy or Kirchhoff stress since
they are related to different configurations at time 7+ 7 and ¢ and thus would not
satisfy the requirements of objectivity.**> A definition of an objective time derivative
may be computed for the Kirchhoff stress by using Eq. (10.20) and is sometimes
referred to as the Truesdell rate®® or equivalently a Lie derivative form.** Accord-
ingly, we note that the objective time derivative is given by

Sy = lim (10.194)
n—0

T = Fy S[JFjJ + Fy Sy Fy+ Fy SquJ (10.195)

Introducing the rate of deformation tensor /; defined as

FiI = ).C,"] = )'c,}jxj’[ = ZUP}I (]0]96)

the stress rate may now be written as

o

75 = Fy Sy Fiy+ la iy + Tl (10.197)
The rate of the second Piola—Kirchhoff stress may be transformed by noting

Ex; =3 (FiFig + Fix Frp) =3 (Fix Fiply + Fag Fily) = Fyg Fip ey (10.198)
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where

. 1 1 8vk 8’0/
g ==+l == — 10.199
€kl =5 (It =+ i) 3 (8)6, +8xk> ( )
in which v, = X, = u, is the velocity vector. The form &, is identical to the rate of
small strain form. Furthermore we have upon grouping terms the rate of stress
expression

Ty = J dyrér + LTy + Tic iy (10.200)

in which dj, is computed now by means of Eq. (10.79). Incremental forms may be
deduced for a rate equation which involve objective approximations for the Lie

derivative.>** For example an approximation to the ‘strain rate’ may be computed
5

from
. 1 _ _
Einsrp ™ A (it D12 DEq (fir Dusr 2 (10.201)
AEk/ = % [(ﬁcm)n-o—lﬁn1)n+1 - 6/{1] (10202)
where
OA(U;) 41
fl“ n+a :(S,“—FOé 10.203
( vl) + ij a(xj)n ( )

with A(u;), 41 = (4;),41 — (4;),. Similarly, an approximation to the Lie derivative of
Kirchhoff stress may be taken as

o 1 — —
(Ti/')n+1/2 ~ At (fi/c)n+l/2 [(fkml)nJrl (Tmn)n+1 (fim l)n+l - (Tkl)n] (];'l)n+l/2 (10.204)

Other approximations may be used; however, the above are quite convenient. In
the approximation a modulus array dj;; must also be obtained. Here there is no
simple form which is always consistent with the tangent needed for a full Newton—
Raphson solution scheme and, often, a constant array is used based on results
from linear elasticity.

Extension of the above to include general material constitution may be performed
by replacing the strain rate by an additive form given as

£= ¢ 4P (10.205)

Once again we can use all the constitutive equations discussed in Chapter 3 (including
those which are not isotropic) to construct a finite element model for the large
strain problem. Here, since approximations not consistent with a Newton—Raphson
scheme are generally used for the moduli, convergence generally does not achieve an
asymptotic quadratic rate. Use of quasi-Newton schemes and line search, as described
in Chapter 2, can improve the convergence properties and leads to excellent perfor-
mance in most situations.

Many other stress rates may be substituted for the Lie derivative. For example, the
Jaumann—Zaremba stress rate form given as

Ty = J digry €1 + D Ty — Wik Tie (10.206)
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may be used. This form is deduced by noting that the rate of deformation tensor may
be split into a symmetric and skew-symmetric form as

where w;; is the rate of spin or vorticity. This form was often used in early develop-
ments of finite element solutions to large strain problems and enjoys considerable
popularity even today.

10.8 Contact problems

In many problems situations are encountered where the points on a boundary of one
body come into contact with points on the boundary of the same or another object.
Such problems are commonly referred to as contact problems. Finite element methods
have been used for many years to solve contact problems.>>~% The patch test has also
been extended to test consistency of contact developments.®> Contact problems are
inherently non-linear since, prior to contact, boundary conditions are given by
traction conditions (often the traction being simply zero) whereas during ‘contact’
kinematic constraints must be imposed which prevent penetration of one boundary
through the other, called the impenetrability condition.

The solution of a contact problem involves first identifying which points on a
boundary interact and second the insertion of appropriate conditions to prevent
the penetration. Figure 10.2 shows a typical situation in which one body is being
pressed into a second body. In Fig. 10.2(a) the two objects are not in contact and
the boundary conditions are specified by zero traction conditions for both bodies.
In Fig. 10.2(b) the two objects are in contact along a part of the boundary segment

(a

(b)

Fig. 10.2 Contact between two bodies: (a) no contact condition; (b) contact state.
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Fig. 10.3 Contact by finite elements.

and here conditions must be inserted to ensure that penetration does not occur. Along
this boundary different types of contact can be modelled, the simplest being a
frictionless condition in which the only non-zero contact traction is normal to the
contact surface. A more complex condition occurs in which traction tangential to
the surface can be generated by frictional conditions. The simplest model for a
frictional condition is Coulomb friction where

1] < plt (10.208)

in which p is a positive frictional parameter, ¢, is the magnitude of the normal
traction, and ¢, is the tangential traction. If the magnitude of ¢, is less than the
limit condition the points on the surface are assumed to stick; whereas if the magni-
tude is at the limit condition s/ip occurs with an imposed tangential traction on each
surface opposite to the direction of slip and equal to p|z,].

In modelling contact problems by finite element methods immediate difficulties
arise. First, it is not possible to model contact at every point along a boundary.
This is primarily because of the fact that the finite element representation of
the boundary is not smooth. For example in the two-dimensional case in which
boundaries of individual elements are straightline segments as shown in Fig. 10.3
nodes 4 and B are in contact with the lower body but the segment between the
nodes is not in contact. Second, finite element modelling results in non-unique
representation of a normal between the two bodies and, again because of finite
element discretization, the normals are not continuous between elements. This is
illustrated also in Fig. 10.3 where it is evident that the normal to the segment between
nodes 4 and B is not the same as the negative normal of the facets around node C
(which indeed are not unique at node C).

10.8.1 Geometric modelling

Node-node contact — Hertzian contact

For applications in which displacements on the contact boundary are small it is
sometimes possible to model the contact by means of nodes. For this to be possible,
the finite element mesh must be constructed such that boundary nodes on one
body, here referred to as slave nodes, match the location of the boundary nodes for
the other body, referred to as master nodes, to within conditions acceptable for
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(c)

Fig. 10.4 Contact between semicircular discs: node—node solution. (a) Undeformed mesh; (b) deformed
mesh: (c) vertical stress contours.

small deformation analysis. Such conditions may also be extended for cases where the
boundary of one body is treated as flat and rigid (unilateral contact). A problem in
which such conditions may be used is the interaction between two half discs (or hemi-
spheres) which are pressed together along the line of action between their centres. A
simple finite element model for such a problem is shown in Fig. 10.4(a) where it is
observed that the horizontal alignment of potential contact nodes on the boundary
of each disc are identical. The solution after pressing the bodies together is indicated
in Fig. 10.4(b) and contours for the vertical normal stress are shown in Fig. 10.4(c). It
is evident that the contours do not match perfectly along the vertical axis owing to
lack of alignment of the nodes in the deformed position. However, the mismatch is
not severe, and useful engineering results are possible. Later we will consider methods
which give a more accurate representation; however, before doing so we consider the
methods available to prevent penetration.

The determination of which nodes are in contact for such a problem can be
monitored simply by comparing the vertical position of each node pair, which may
be treated as a simple two-node element. Thus denoting the upper disc as slave
body ‘s’ and the lower one as master body ‘»’ we can monitor the vertical gap

g =) =2 = (K49 — [+ ) (10.209)

If g > 0 no contact exists, whereas if g < 0 contact or penetration has occurred. (We
note that penetration can exist for any iteration in which no modification of the
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formulation has been inserted.) Thus, the next step is to insert a constraint condition
for any nodal pair (element) in which the gap g is negative or zero (here some
tolerance usually is necessary to define ‘zero’). There are many approaches which
may be used to insert the constraint. Here we discuss use of a Lagrange multiplier
form, a penalty approach, and an augmented lagrangian approach.!

Lagrange multiplier form

A Lagrange multiplier approach is given simply by multiplying the gap condition
given in Eq. (10.209) by the multiplier. Accordingly, we can write for each nodal
pair for which contact has been assigned a variational term

I, = \g (10.210)

and add its first variation to the variational equations being used to solve the problem.
The first variation to Eq. (10.210) is given as

STI, = SAg + [6us” — 6ul™ ]\ (10.211)

and thus we identify A\ as a ‘force’ applied to each node to prevent penetration.
Linearization of Eq. (10.211) produces a tangent matrix term for use in a Newton—
Raphson solution process. The final tangent and residual for the nodal contact
element may be written as

0 0 17 ( & -
0 0 —1|[{gmp=4 A (10.212)
=1 0] ax —g

and is added into the equations in a manner identical to any element assembly
process. It is evident that the equations in this form introduce a new unknown for
each contact pair. Also, as for any Lagrange multiplier approach, the equations are
not positive definite and indeed have a zero diagonal for each multiplier term, thus,
special care is needed in the solution process to avoid divisions by the zero diagonal.

Penalty function form

An approach which avoids equation solution difficulties of a Lagrange multiplier
method is the penalty method, as described many times in Volume 1. In this the
contact term is given by

1= kg (10.213)

where k is a penalty parameter. The matrix equation for a nodal pair is now given by

. d (s) .
[ " ’1 ol { ”g} (10.214)
—K K duém) kg
In a penalty approach the final gap will not be zero but becomes a small number
depending on the value of the parameter s selected. Thus, the advantage of the
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penalty method is somewhat offset by a need to identify the value of the parameter
that gives an acceptable answer. Indeed, in a complex problem this is not a trivial
task, especially for problems involving contact between beam, plate, or shell elements
and solid elements.

Augmented lagrangian form

A compromise between the penalty method and the Lagrange multiplier method may
be achieved by using an iterative update for the multiplier combined with a penalty-
like form. We discussed this for incompressibility problems in Sec. 12.6 of Volume 1
and here indicate briefly how it applies equally to the contact problem. Based on
results from Volume 1 we may write the augmented form as

_ du? A\ —
[ " '1 “ :{ k Hg} (10.215)
—k K du§m> M+ kg
where an update to the Lagrange multiplier is computed by using®!
Ak+l :)\k—f—/ig (10216)

Such an update may be computed after each Newton—Raphson iteration or in an
added iteration loop after convergence of the Newton—Raphson iteration. In
either case a loss of quadratic convergence results for the simple augmented strategy
shown. Improvements to superlinear convergence are possible as shown by Zavarise
and Wriggers,*® and a more complex approach which restores the quadratic
convergence rate may be introduced at the expense of retaining an added variable.>*
In general, however, use of a fairly large value of the penalty parameter in the simple
scheme shown above is sufficient to achieve good solutions with few added
iterations.

Node-surface contact

The simplest form for contact between bodies in which nodes on surfaces of one body
do not interact directly with nodes on a second body is defined by a node—surface
treatment. A two-dimensional treatment for this case is shown in Fig. 10.5 where a
node, called the slave node, with deformed position X, can contact a segment, called
the master surface, defined for simplicity in two dimensions by an interpolation

x = N,(&)x, (10.217)

This interpolation may be treated either as the usual interpolation along the edge
facets of elements describing the target body as shown in Fig. 10.5(a) or by an inter-
polation which smooths the slope discontinuity between adjacent element surface
facets as shown in Fig. 10.5(b).

A contact between the two bodies occurs when the gap g, shown in Fig. 10.5
becomes zero. The determination of a contact requires a search to find which
target facet is a potential contact surface and computation of the associated gap
for each one. If the gap is positive no contact condition exists and, thus, no modifica-
tion to the governing equations is required. If the gap is negative a ‘penetration’ of the
two bodies has occurred and it is necessary to modify the equilibrium equations to
reflect the contact forces which occur.
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Fig. 10.5 Node-to-surface contact: (a) contact using element interpolations; (b) contact using ‘smoothed’
interpolations.

To determine the gap it is necessary to find the point on the target (master) facet
which is closest to the slave node. This can be accomplished by expressing points
on the facet by using Eq. (10.217) and finding the value of £ which minimizes the
function

f6) :% (XsT - XT) (xy — X) = minimum (10.218)

Here again a Newton—Raphson solution method may be used to find a solution.
Linearizing, we solve for iterates from

dr

[Xexe — (% = x(6) X ge] d& = x(x, — x(§)) = xR (10.219)

with updates
&1 =&+ dg

until R =0 is satisfied to within a specified tolerance. For the two-dimensional
problem in which linear interpolation is used to define N, (), the expression for R
is linear in £ and, thus, convergence is achieved in one iteration. Denoting the solution
as &, the location of the closest point on the target facet becomes x, as shown in
Fig. 10.5 and, using Eq. (10.217), is given by

Xe = No(&)Xa (10.220)

For frictionless contact only normal tractions are involved on the surfaces between
the two bodies; thus sliding can occur without generation of tangential forces and the
traction is given by

t=Aun, (10.221)

where )\, is the magnitude of a normal traction applied to the contact target and n. is a
unit normal to the master facet at the point £.. This case can be included by appending
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the variation of a Lagrange multiplier term to the Galerkin (weak) form describing
equilibrium of the problem for each contact slave node. This term may be expressed as

. = (Ann;:r) (gnnc)Ac (10222)

where at the solution point &,
&nle = X5 — x(fc) (10223)

and A is a surface area associated with the slave node.” In the development sum-
marized here the surface area term is based on the reference configuration and kept
constant during the analysis. Thus, the traction measure A, is a reference surface
measure which must be scaled by the current surface area ratio to obtain the magni-
tude of the traction in the deformed state.

Use of the Lagrange multiplier form introduces an additional unknown A, for each
master—slave contact pair. Since a contact traction interacts with both bodies it must
be determined as part of the solution of the global equilibrium equations. Of course,
we again can eliminate the contact tractions by using a penalty form for the constraint
in a manner similar to that used for treating node—node contact [Eq. (10.213)]. How-
ever, even then the problem is more complex as we do not know a priori which master
facet a contact node will interact with. This implies that the non-zero structure of the
global tangent matrix will change during the solution of any contact problem and
continual updates are required to describe the profile or sparse structure.

The variation of the potential given in Eq. (10.222) may be expressed as

L, = [6(\and) game + (6X] — 6% ) m A, ] Ae (10.224)
where the variation of the coordinate x. is given by
0Xe = Ny 0X, + X ¢ 66, (10.225)

with x . computed by differentiation of the interpolation functions in Eq. (10.217) and
then evaluated at £.. Noting now that

nin =1 and nl 6n, =0 (10.226)
the added contact term may be written in matrix form as
ZnAc
AnAcn,
O, = Toosxr, se, e 10.227
C [6)‘n7 6Xs 9 5X(17 6&. ] _)\n AC N(y nc ( )
- A xg n,

where we note that the entry multiplying 6£, vanishes at £ = £,. At a solution g,
should also be zero; however, in some iterations it may be non-zero as a result of
penetrations occurring before the contact term is inserted (also for penalty type
methods it will never be exactly zero).

* One is tempted to use nInC = 1 to simplify Eq. (10.222); however, doing this the advantages of Eq. (10.223)
are then lost and computation of the tangent becomes more complex.
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Using a Newton—Raphson solution procedure generates a tangent matrix
expressed formally by the term
d(8T1) = {(6x{ — 6x2) d(Aame) + 6(Aamg ) (dx, — dX,)
— X d(6x0 )0 + gon"d[5(Aam.)] } A (10.228)

The linearization is straightforward except for the terms involving n.. It is necessary
here to use a form which does not divide by g, [which would result in using
Eq. (10.223) directly]. This may be achieved by introducing a surface unit tangent
vector

to=—: (10.229)

and using
n, = t. X e3 and on, = bt. x e3 (10.230)

where e is a unit vector normal to the plane of deformation. Now

1
St = I—t.t]]6x; = ——n.nl 6x (10.231)
< Xl - tete] oxe [Ixll
which upon using Eq. (10.230) gives
T
n; 6
b, = — e %8 (10.232)
[Ixll
Performing all linearizations results in the tangent term
0 Acnl —NzAnl 0 d,
A.n 0 Gy G, dx
(), oxF, ox!, €] ‘ ; * * L (10233
—Ny,An, Gy G.s G¢ dx,
0 Gy Gy G dg,
where
A AN
Gy=-""""Pyn =G
e T
AAK
G, = — n “1c LX :GT
P
A A
of = ||I;||2C [Ny Nsexeng + Ny NgneXe — gy Noe Nyenen | (10.234)
AnAck
a¢ == — [NaXg — gaNagne]
[Ix]]
gn’{c
Gee = MA: |1 —
&
e IX,sIIZ]
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in which k., =n} X ¢ is related to the target facet curvature. Clearly, for a straight
contact facet with linear interpolation defining x(£) many of the terms in Eq. (10.234)
vanish and the tangent is greatly simplified. In such a case, however, special attention
must be devoted to the case where a slave node is very near a master node and
oscillations on which facet to use occur during subsequent Newton—Raphson
iterations. Here an expedient solution is to use concepts from multi-surface plasticity
to define a ‘continuous’ approximation for the normal. This leads to additional
considerations which are not given here and are left for the reader to develop (sece
reference 55).

The tangent matrix may be reduced by eliminating the dependence on d¢.. The
reduced tangent then depends only on the Lagrange multiplier A, and geometry
terms computed from current values of nodal parameters.

Extension to three-dimensional problems is straightforward and involves addition
of a second natural coordinate n and replacing e; by a second surface tangent vector
deduced from x ,,. Extension to include frictional effects may also be performed and
the reader is referred to the literature for additional details.®’~*!

10.9 Numerical examples

10.9.1 Node-surface contact between discs

As a first example here we consider the contact problem previously solved using a
node—node approach. In that case we observed a small but significant discontinuity
between the contours of vertical stress between the bodies, indicating that traction
is not correctly transmitted across the section. Here we use the node—surface
method given above in which the contact area of each body is taken as the boundary
of elements. The solution is achieved by using a penalty method and a two-pass solu-
tion procedure where on the first pass one body is the slave and the other the master
and on the second pass the designation is reversed. This approach has been shown to
be necessary in order to satisfy the mixed patch test for contact.®® The results using
this approach are shown in Fig. 10.6. For the solution, the two-dimensional plane

Fig. 10.6 Contact between semicircular disks: vertical contours for node-to-surface solution.
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strain finite deformation displacement element described in Sec. 10.3.2 is used with
material behaviour given by the neo-Hookean hyperelastic model described in
Sec. 10.7.1. Properties are: £ = 100000 for the upper body and E = 1000 for the
lower body. A Poisson ratio of v = 0.25 is used to compute Lamé parameters \
and p. As can readily be seen in the figure the results obtained are significantly
better than those from the node-to-node analysis.

10.9.2 Upsetting of a cylindrical billet

To illustrate performance in highly strained regimes, we consider large compression
of a three-dimensional cylindrical billet. The initial configuration is a cylinder

v=-6 v=—

Fig. 10.7 Initial and final configurations for a billet.
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with radius, r =10, and height, # = 15. The mesh consists of 459 eight-noded
hexahedral elements based on the mixed-enhanced formulation presented in Sec.
10.5. The billet is loaded via displacement control on the upper surface, while the
lower edge is fully restrained. A full Newton—Raphson solution process is used in
which the upper displacement is increased by increments of displacement equal to
0.25 units.

To prevent penetration with the rigid base during large deformations a simple
node-on-node penalty formulation with a penalty parameter k = 10° is defined for
nodes on the lower part of the cylindrical boundary. A neo-Hookean material
model with A = 10* and =10 is used for the simulation. Figure 10.7 depicts the
initial mesh and progression of deformation.

10.9.3 Necking of circular bar

The last example we include is a large deformation plasticity problem. Here we
consider the three-dimensional behaviour of a cylindrical bar subjected to tension.
In the presence of plastic deformation an unstable plastic necking will occur at
some location along a bar of mild steel, or similar elasto-plastic behaving material.
This is easily observed from the tension test of a cylindrical specimen which tapers
by a small amount to a central location to ensure that the location of necking will
occur in a specified location. A finite element model is constructed having the same
taper, and here only one-eighth of the bar need be modelled as shown in
Fig. 10.8(a). In Fig. 10.8(b) we show the half-bar model which is projected by
symmetry and reflection and on which the behaviour will be illustrated.

(a) (b)

Fig. 10.8 Necking of a cylindrical bar: eight-noded elements. (a) Finite element model; (b) half-bar by
symmetry.
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This problem has been studied by several authors and here the properties are taken
as described by Simo and co-workers.>”?* The one-eighth quadrant model consists of
960 eight-noded hexahedra of the mixed type discussed in Sec. 10.5. The radius at the
loading end is taken as R = 6.413 and a uniform taper to a central radius of
R, =0.982 x R is used. The total length of the bar is L = 53.334 (giving a half
length of 25.667). The mesh along the length is uniform between the centre (0) and
a distance of 10, and again from 10 to the end. A blending function mesh generation
is used (see Sec. 9.12, Volume 1) to ensure that exterior nodes lic exactly on the
circular radius. This ensures that, as much as possible for the discretization employed,
the response will be axisymmetric.

The finite deformation plasticity model based on the logarithmic stretch elastic
behaviour from Sec. 10.7.2 and the finite plasticity as described in Sec. 10.7.3 is
used for the analysis. The material properties used are as follows: elastic properties
are K = 164.21 and G = 80.1938; a J, plasticity model in terms of principal Kirchhoff
stresses 7; with an initial yield in tension of 7, = 0.45 is used. Only isotropic hardening
is included and a saturation type model defined by

k=He’+ [1° — 7] (1 —exp[—6eP])

with the parameters
H; = 0.12924, °=0.715 and §=16.93

is employed. An alternative to this is a piecewise linear behavior as suggested by some
authors; however, the above model is very easy to implement and gives a smooth
behaviour with increase in the accumulated plastic strain P as the hardening
parameter k.

In Fig. 10.9 we show the deformed configuration of the bar at an elongation of
22.5 per cent (elongation = 6 units). Figure 10.9(a) has the contours of the first
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Fig. 10.9 Deformed configuration and contours for necking of bar: (a) first invariant (/;); (b) second invariant
(42)-
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Fig. 10.10 Neck radius versus elongation displacement for a half-bar.

invariant of Cauchy stress superposed and Fig. 10.9(b) those for the second invariant
of the deviator stresses. It is apparent that considerable variation in pressure (first
invariant divided by 3) occurs in the necked region, whereas the values of the
second deviator invariant vary more smoothly in this region. A plot of the radius
of the bar at the centre is shown Fig. 10.10 for different elongation values.

This example is quite sensitive to solve as the response involves an unstable
behaviour of the necking process. Use of a full Newton—Raphson scheme was
generally ineffective in this regime and here a modified Newton—Raphson scheme
together with a BFGS (Broyden—Fletcher—Goldfarb—Shanno) secant update was
employed (see Sec. 2.2.4). When near convergence was achieved the algorithm was
then switched to a full Newton—Raphson process and during the last iterations
quadratic convergence was obtained when used with an algorithmic consistent
tangent matrix as described in Sections 10.7.2 and 10.7.3.

10.10 Concluding remarks

This chapter presents a unified approach for all finite deformation problems. The
various procedures for solution of the resulting non-linear algebraic system have
followed those presented in Chapter 2. Although not discussed extensively in the
chapter, the extension to consider transient (dynamic) situations is easily accom-
plished. The long-term integration of dynamic problems occasionally presents
difficulties using the time integration procedures discussed in Volume 1. Here schemes
which conserve momentum and energy for hyperelastic materials can be considered as
alternatives, and the reader is referred to literature on the subject for additional
details, %082~

We have also presented some mixed forms for developing elements which perform
well at finite strains and with materials which can exhibit nearly incompressible
behaviour. These elements are developed in a form which allow the introduction of
finite elastic and inelastic material models without difficulty. Indeed, we have
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shown that there is no need to decouple the constitutive behaviour between volu-
metric and deviatoric response as often assumed in many presentations. We usually
find that transformation to a current configuration form in which either the Kirchhoff
stress or the Cauchy stress is used directly will lead to a form which admits a simple
extension of existing small deformation finite element procedures for developing the
necessary residual (force) and stiffness matrices. An exception here is the presentation
of the mixed—enhanced form in which all basic development is shown using the
deformation gradient and first Piola—Kirchhoff stress. Here we could express final
answers in a current configuration form also, but we leave these steps for the
reader to perform.

In this chapter we have concentrated on developments for continuum problems in
which the full two- or three-dimensional equations are modelled by finite elements. In
the next chapter we address problems which can be represented using beam (rod),
plate, or shell models and thus permit a reduction of the discretization space to one
or two dimensions.
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11

Non-linear structural problems -
large displacement and instability

11.1 Introduction

In the previous chapter the question of finite deformations and non-linear material
behaviour was discussed and methods were developed to allow the standard linear
forms to be used in an iterative way to obtain solutions. In the present chapter we con-
sider the more specialized problem of large displacements but with strains restricted
to be small. Generally, we shall assume that ‘small strain’ stress—strain relations are
adequate but for accurate determination of the displacements geometric non-linearity
needs to be considered. Here, for instance, stresses arising from membrane action,
usually neglected in plate flexure, may cause a considerable decrease of displacements
as compared with the linear solution discussed in Chapters 4 and 5, even though
displacements remain quite small. Conversely, it may be found that a load is reached
where indeed a state may be attained where load-carrying capacity decreases with
continuing deformation. This classic problem is that of structural stability and
obviously has many practical implications. The applications of such an analysis are
clearly of considerable importance in aerospace and automotive engineering applica-
tions, design of telescopes, wind loading on cooling towers, box girder bridges with
thin diaphrams and other relatively ‘slender’ structures.

In this chapter we consider the above class of problems applied to beam, plate, and
shell systems by examining the basic non-linear equilibrium equations. Such considera-
tions lead also to the formulation of classical initial stability problems. These concepts
are illustrated in detail by formulating the large deflection and initial stability problems
for beams and flat plates. A lagrangian approach is adopted throughout in which
displacements are referred to the original (reference) configuration.

11.2 Large displacement theory of beams
11.2.1 Geometrically exact formulation

In Sec. 2.10 of Volume 1 we briefly described the behaviour for the bending of a beam
for the small strain theory. Here we present a form for cases in which large
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/

X X

Fig. 11.1 Finite motion of three-dimensional beams.

displacements with finite rotations occur. We shall, however, assume that the
strains which result are small. A two-dimensional theory of beams (rods) was
developed by Reissner' and was extended to a three-dimensional dynamic form by
Simo.> In these developments the normal to the cross-section is followed, as
contrasted to following the tangent to the beam axis, by an orthogonal frame.
Here we consider an initially straight beam for which the orthogonal triad of the
beam cross-section is denoted by the vectors a; (Fig. 11.1). The motion for the
beam can then be written as

¢ =x=x + Ay Z; (11.1)
where the orthogonal matrix is related to the a; vectors as
A:[al a 33] (112)

If we assume that the reference coordinate X (X) is the beam axis and X,, X3 (Y, 2)
are the axes of the cross-section the above motion may be written in matrix form as

X X X u Ay A A 0
X2 = y = 0 + v + A21 A22 A23 Y (1 13)
X3 z 0 w A31 A32 A33 Z

where u(X), v(X), and w(X) are displacements of the beam reference axis and where
A(X) is the rotation of the beam cross-section which does not necessarily remain
normal to the beam axis and thus admits the possibility of transverse shearing
deformations.

The derivation of the deformation gradient for Eq. (11.3) requires computation of
the derivatives of the displacements and the rotation matrix. The derivative of the
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rotation matrix is given by*?
Ay=0,A (11.4)

where ﬁ x denotes a skew symmetric matrix for the derivatives of a rotation vector 0
and is expressed by

0 *92,)( 9)',)(
0= 0,x 0 —Oxx (11.5)
—Oy x 9X,X 0

Here we consider in detail the two-dimensional case where the motion is restricted to
the X—Z plane. The orthogonal matrix may then be represented as (0y = ()

cos 0 sing
A= 0 1 0 (11.6)
—sing 0 cospf

Inserting this in Eq. (11.3) and expanding, the deformed position then is described
compactly by

x=X+u(X)+ Zsinp(X)
y=Y (11.7)
z=w(X)+ Z cos 5(X)
This results in the deformed configuration for a beam shown in Fig. 11.2. It is a two-
dimensional specialization of the theory presented by Simo and co-workers>*> and is

called geometrically exact since no small-angle approximations are involved. The
deformation gradient for this displacement is given by the relation

(1 4+uy+Z3ycosf 0 sin 3
Fy = 0 1 0 (11.8)
Wy —ZfBysinfj 0 cos 3

Z z

Fig. 11.2 Deformed beam configuration.
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Using Eq (10.15) and computing the Green—Lagrange strain tensor, two non-zero

components are obtained which, ignoring a quadratic term in Z, are expressed by
EXX:M’X+%(H?X+1V,2)()+ZA67X:E0+ZKb (119)
2Ey; =(1+uy)sinf+wycos=T .

where E° and T are strains which are constant on the cross-section and K° measures
change in rotation (curvature) of the cross-sections and

A= (1+uy)cosf—wysinf (11.10)

A variational equation for the beam can be written now by introducing second
Piola—Kirchhoff stresses as described in Chapter 10 to obtain

6H:J (6EXXSXX+26EXZSXZ)dV_6HeXt (1111)
Q

where 611, denotes the terms from end forces and loading along the length. If we
separate the volume integral into one along the length times an integral over the
beam cross-sectional area 4 and define force resultants as

TP:J SyydA, szj SyzdA and Mb:J SyyZdA (11.12)
4 4 4
the variational equation may be written compactly as
‘SH:J (SE°TP + 6T SP + 6K® M) dX — 611,y (11.13)
L
where virtual strains for the beam are given by
SEY = (1 +uy)ouy +wyowy
OT' = sin Béu y + cos Béw y + A6f3 (11.14)
6K® = A6B y + T 86 + cos B6uy + sin Béw

A finite element approximation for the displacements may be introduced in a
manner identical to that used in Sec. 7.4 for axisymmetric shells. Accordingly, we

can write
u U,
w o =Ny(X)< w, (11.15)
B Ba

where the shape functions for each variable are the same. Using this approximation
the virtual work is computed as
TP
6T = [bu, 6w, wa]J BI{ SP 3dX — 610, (11.16)
L b
M
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where

(1+M,X)N(1,X W,XN(L,X 0
B, = sin 3N, x Cos BN, x AN, (11.17)
B x cos 5Na,x —ﬁ,X sin ﬁNa,X (ANa,X - Fﬁ,XNa)

Just as for the axisymmetric shell described in Sec. 7.4 this interpolation will lead to
‘shear locking” and it is necessary to compute the integrals for stresses by using a
‘reduced quadrature’. For a two-noded beam element this implies use of one quadra-
ture point for each element. Alternatively, a mixed formulation where I and SP are
assumed constant in each element can be introduced as was done in Sec. 5.6 for the
bending analysis of plates using the T6S3B3 element.
The non-linear equilibrium equation for a quasi-static problem that is solved at
each load level (or time) is given by
Novi

\1:,,+1:f,7+1—JLB§ Shoy pdX =0 (11.18)
Mn+l

For a Newton—Raphson-type solution the tangent stiffness matrix is deduced by a
linearization of Eq. (11.18). To give a specific relation for the derivation we
assume, for simplicity, the strains are small and the constitution may be expressed
by a linear elastic relation between the Green—Lagrange strains and the second
Piola—Kirchhoff stresses. Accordingly, we take

SXX:EEXX and SXZZZGEXZ (1119)

where E is a Young’s modulus and G a shear modulus. Integrating Eq. (11.12) the
elastic behaviour of the beam resultants becomes

TP = EAE’, SP=kGAT and M°=EIK®

in which A is the cross-sectional area, I is the moment of inertia about the centroid,
and k is a shear correction factor to account for the fact that Sy, is not constant on
the cross-section. Using these relations the linearization of Eq. (11.18) gives the
tangent stiffness

(K)o :J BTD: B, dX + (Kg).s (11.20)
L

where for the simple elastic relation Eq. (11.20)
EA
Dr = kGA (11.21)
EI

and Kg is the geometric stiffness resulting from linearization of the non-linear
expression for B. After some algebra the reader can verify that the geometric stiffness
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is given by
TP 0 MP cos 3 00 0
(KG)aﬁ:L Nox 0 TP —MP°sinf3 |Ngy +N,|0 0 0 [N
MPcosB —MPsing 0 0 0 G,
00 G 0 0 0
+Nox |0 0 Gy |[Nsj+N,| 0 O 0 [Ny |dX (11.22)
0 0 —M°T G, G, —MT
where

G, = SPcos 3 — Mbﬂ,x sin3, G,=-S"sing— Mbﬁl’X cos f3,
and

Gy =—S"T — M°BxA

11.2.2 Large displacement formulation with small rotations

In many applications the full non-linear displacement field with finite rotations is not
needed; however, the behaviour is such that limitations of the small displacement
theory are not appropriate. In such cases we can assume that rotations are small so
that the trigonometric functions may be approximated as

sin = (3 and cosff=1
In this case the displacement approximations become

x=X+4+ulX)+ZpX)
y=Y (11.23)
z=wX)+Z

which yield now the non-zero Green—Lagrange strain expressions

Eyy =uy+1@y +wh)+ZBy =E"+ZK"

(11.24)
2Exy;=wxy+3=T

where terms in Z> as well as products of 3 with derivatives of displacements are
ignored. With this approximation and again using Eq. (11.15) for the finite element
representation of the displacements in each element we obtain the set of non-linear
equilibrium equations given by Eq. (11.18) in which now
(I4+uy)Nox wxyNyx 0
B, = 0 Nox N, (11.25)
0 0 Ny x
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This expression results in a much simpler geometric stiffness term in the tangent
matrix given by Eq. (11.20) and may be written simply as

" 0 0
(KG)a@ = JL NQ,X 0 ™ 0 Nﬂ,X dXx (1126)
0O 0 O

It is also possible to reduce the theory further by assuming shear deformations to be
negligible so that from I' = 0 we have

B=—-wy (11.27)

Taking the approximations now in the form

u= N}u,
- 5= (11.28)
w= N(y Wo + Naﬂa
in which 3, = W, x at nodes.
The equilibrium equation is now given by
NP,
\I',,H:f,m—J Bg{ . }dX:O (11.29)
L n+1
where the strain displacement matrix is expressed as
(1+u,X)N(L){¢,X w’,XN(‘:;X w),XNZ/:,X
B, = 0 N 7 (11.30)
a, XX a, XX

The tangent matrix is given by Eq. (11.20) where the elastic tangent moduli involve
only the terms from 7P and M" as

D, = [EA 0 ] (11.31)
0 EI
and the geometric tangent is given by
NoxTP Njx 0 0
(KG)ap = JL Nox 0 wxTPNiy NixT°Njy|dx  (11.32)
0 NoyT'Nix NixTPNjy

Example: a clamped-hinged arch

To illustrate the performance and limitations of the above formulations we consider
the behaviour of a circular arch with one boundary clamped, the other boundary
hinged and loaded by a single point load, as shown in Fig. 11.3(a). Here it is necessary
to introduce a transformation between the axes used to define each beam element and
the global axes used to define the arch. This follows standard procedures as used
many times previously. The cross-section of the beam is a unit square with other
properties as shown in the figure. An analytical solution to this problem has been
obtained by da Deppo and Schmidt® and an early finite element solution by Wood
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Fig. 11.3 Clamped-hinged arch: (a) problem definition; (b) load deflection.

and Zienkiewicz.” Here a solution is obtained using 40 two-noded elements of the
types presented in this section. The problem produces a complex load displacement
history with ‘softening’ behaviour that is traced using the arc-length method
described in Sec. 2.2.6 [Fig. 11.3(b)]. It is observed from Fig. 11.3(b) that the assump-
tion of small rotation produces an accurate trace of the behaviour only during the
early parts of loading and also produces a limit state which is far from reality. This
emphasizes clearly the type of discrepancies that can occur by misusing a formulation
in which assumptions are involved.

Deformed configurations during the deformation history are shown for the load
parameter § = EI/PR2 in Fig. 11.4. In Fig. 11.4(a) we show the deformed configura-
tion for five loading levels — three before the limit load is reached and two after
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— Finite angie
----S8mall angle

(a) (b)

Fig. 11.4 Clamped-hinged arch: deformed shapes. (a) Finite-angle solution; (b) finite-angle form compared
with small-angle form.

passing the limit load. It will be observed that continued loading would not lead to
correct solutions unless a contact state is used between the support and the arch
member. This aspect was considered by Simo et al.® and loading was applied much
further into the deformation process. In Fig. 11.4(b) we show a comparison of the
deformed shapes for 5 = 3.0 where the small-angle assumption is still valid.

11.3 Elastic stability — energy interpretation

The energy expression given in Eq. (10.37) and the equilibrium behaviour deduced
from the first variation given by Eq. (10.42) may also be used to assess the stability
of equilibrium.” For an equ‘ilibrium state we always have

Sl =—6a' ¥ =0 (11.33)

that is, the total potential energy is stationary [which, ignoring inertia effects, is
equivalent to Eq. (10.65)].
The second variation of IT is

& = §(6T1) = —6u" 6% = S’ Ky 6t (11.34)

The stability criterion is given by a positive value of this second variation and,
conversely, instability by a negative value (as in the first case energy has to be
added to the structure whereas in the second it contains surplus energy). In other
words, if Ky is positive definite, stability exists. This criterion is well known’ and of
considerable use when investigating stability during large deformation.'®!" An
alternative test is to investigate the sign of the determinant of Ky, a positive sign
denoting stability.12

A limit on stability exists when the second variation is zero. We note from
Eq. (10.66) that the stability test then can be written as (assuming K; is zero)

5" Ky 6 4 6’ K 6a = 0 (11.35)
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This may be written in the Rayleigh quotient form"

~T ~
(m == (11.36)
where we have
<1, stable
A =1, stability limit (11.37)

> 1, unstable

The limit of stability is sometimes called neutral equilibrium since the configuration
may be changed by a small amount without affecting the value of the second variation
(i.e. equilibrium balance). Several options exist for implementing the above test and
the simplest is to let A = 1 + A\ and write the problem in the form of a generalized
linear eigenproblem given by

Ky 6u = ANKg éu (11.38)

Here we seek the solution where A is zero to define a stability limit. This form uses
the usual tangent matrix directly and requires only a separate implementation for the
geometric term and availability of a general eigensolution routine. To maintain
numerical conditioning in the eigenproblem near a buckling or limit state where Kt
is singular a shift may be used as described for the vibration problem in Chapter 17
of Volume 1.

Euler buckling — propped cantilever

As an example of the stability test we consider the buckling of a straight beam with
one end fixed and the other on a roller support. We can also use this example to
show the usefulness of the small angle beam theory.

An axial compressive load is applied to the roller end and the Euler buckling load
computed. This is a problem in which the displacement prior to buckling is purely
axial. The buckling load may be estimated relative to the small deformation theory
by using the solution from the first tangent matrix computed. Alternatively, the
buckling load can be computed by increasing the load until the tangent matrix
becomes singular. In the case of a structure where the distribution of the internal
forces does not change with load level and material is linear elastic there is no
difference in the results obtained. Table 11.1 shows the results obtained for the
propped cantilever using different numbers of elements. Here it is observed that
accurate results for higher modes require use of more elements; however, both the
finite rotation and small rotation formulations given above yield identical answers

Table 11.1 Linear buckling load estimates

Number of elements

20 100 500
20.36 20.19 20.18
61.14 59.67 59.61

124.79 118.85 118.62
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since no rotation is present prior to buckling. The properties used in the analysis are
E=12x10%4=1,1= 1/12, and length L = 100. The classical Euler buckling load
is given by

EI

7
with the lowest buckling load given as a = 20.18."

P =a (11.39)

11.4 Large displacement theory of thick plates

11.4.1 Definitions

The small rotation form for beams described in Sec. 11.2.2 may be used to consider
problems associated with deformation of plates subject to ‘in-plane’ and ‘lateral’
forces, when displacements are not infinitesimal but also not excessively large
(Fig. 11.5). In this situation the ‘change-in-geometry’ effect is less important than
the relative magnitudes of the linear and non-linear strain-displacement terms, and
in fact for ‘stiffening’ problems the non-linear displacements are always less than
the corresponding linear ones (see Fig. 11.6). It is well known that in such situations
the lateral displacements will be responsible for development of ‘membrane’-type
strains and now the two problems of ‘in-plane’ and ‘lateral’ deformation can no
longer be dealt with separately but are coupled.

(b)

Fig. 11.5 (a) 'In-plane’ and bending resultants for a flat plate; (b) increase of middle surface length owing to
lateral displacement.
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Fig. 11.6 Central deflection w, of a clamped square plate under uniform load p;'? u = v = 0 at edge.

Generally, for plates the rotation angles remain small unless in-plane strains also
become large. To develop the equations for small rotations in which plate bending
is modelled using the formulations discussed in Chapter 5 we generalize the displace-
ment field given in Eq. (4.9) to include the effects of in-plane displacements.
Accordingly, we write

U M(Xa Y) HX(Xa Y)
u= Uy = 'U(X7 Y) —Z ey<X, Y) (1140)
us w(X,Y) 0

where 0 are small rotations defined according to Fig. 4.3 and X, Y, Z denote positions
in the reference configuration of the plate. Using these to compute the Green—
Lagrange strains given by Eq. (10.15) we can write the non-zero terms as

Exx Uy +3 (W,X)z Ox x

Eyy vy +1(wy) Oy y

2Eyy p=quy+vy+wywy o —Z Oxy+0yyx (11.41)
2Exz —Oy +wy 0

2Eyz —Oy +wy 0

In these expressions we have used classical results' that ignore all square terms
involving 0 and derivatives of u and v, as well as terms which contain quadratic
powers of Z.

Generally, the position of the in-plane reference coordinates X and Y change very
little during deformations and we can replace them with the current coordinates x and
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v just as is done implicitly for the small strain case considered in Chapter 4. Thus, we
can represent the Green—Lagrange strains in terms of the middle surface strains and
changes in curvature as

u,x +% (W,x)z 9,\‘,,\‘
E=q o, +l(w,)? -2 0, =E’ - 7zK° (11.42)
Uy + v, +wow, Ory + 0,

where EP denotes the in-plane membrane strains and K® the change in curvatures
owing to bending. In addition we have the transverse shearing strains given by

_0y+ /7\_
™ :{ x T } (11.43)

79_‘,, +w,

The variations of the strains are given by

ou we 0
b ’ ’ ow
OEP = ov,, +1 0 w, { S } (11.44)
ou , + v . W, Wy v
00,
b o . =60, + éw
0K® = 00, , and I = ’ (11.45)
- =60, + ow,,
60y, + 00, . '

Using these expressions the variation of the plate equations may be expressed as
OI1 = J (6EP)TSdV + J (TS dv + J (K®)TSZ AV — 611y, (11.46)
Q Q Q

Defining the integrals through the thickness in terms of the ‘in-plane’ membrane forces

SXX

X t/2 t/2
™= T, :J SdZEJ Syy pdZ (11.47)
: —1/2 —1/2
Txy SXY
transverse shears
T,. 2. t/2 S
=3 * :J SSdZEJ { XZ}dZ (11.48)
Tyz —1/2 —1/2 SYZ
and bending forces
Mxx t)2 t)2 SXX
MP={ M, =—J SZdZE—J Syy ¢ ZdZ (11.49)
. —1/2 —1/2
M,, Sxy

we obtain the virtual work expression for the plate, given as
61T = J [(FEPYTTP + 5(I°)TT° + 6(K")"MP] dA — 6T, (11.50)
4

This may now be used to construct a finite element solution.
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11.4.2 Finite element evaluation of strain-displacement
matrices

For further evaluation it is necessary to establish expressions for the finite element B
and Kt matrices. Introducing the finite element approximations, we have

<

u N,

«

o (11.51)

<

I
=

o1

=

w N

«

9-" _arf (éx)ry
{ey} _Na{ @)(,} 11.5)

The expressions for the strain—displacement matrices are deduced from Eqs (11.44)
and (11.45) as

and

N(y,x 0 sii W 0 6%
i, -
0EP =Bbéa,=| O N,, { 5i } + 10 w, |G, 6(0y),
Ve .
Noy Ny Wy, oWy 6(6,)a
= B, 6, + BL 6w, (11.53)
‘ W,
N -ND 0 o
or® = B}, 6w, = . . 5(6y)q (11.54)
Vi 0 Nl sy,
and
0 N, 0 5,
SK* =BLow, = |0 0 N, |< 86, (11.55)
0o No, NI | L86))a
where
G N 00 (11.56)
“ Nyy 00 '
with nodal parameters defined by
51 = [ﬁn Uy Wq (éx)a (é) )(v} = [“;5 WZ]

Uy = [il, T,] and Wy =[w, (0)a (0,)a]

We here immediately recognize an in-plane term which is identical to the small
strain (linear) plane stress (membrane) form and a term which is identical to the
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small strain bending and transverse shear form. The added nonlinear in-plane term
results from the quadratic displacement terms in the membrane strains.
Using the above strain—displacement matrices we can now write Eq. (11.50) as

I = dat J (BP)TTP dA + 6w J (BT dA + 6w J (B2)TMP dA — 611, =0
A A A

(11.57)
Grouping the force terms as
TP
6= T° (11.58)
Mb
and the strain matrices as
B, B;
B,=|0 B (11.59)
0 B
the virtual work expression may be written compactly as
mzéﬁzj Bl6dA4 — 6l =0 (11.60)
4
The non-linear problem to be solved is thus expressed as
\Ila:fa—J Bleda=0 (11.61)
4

This may be solved by using a Newton—Raphson process for which a tangent matrix
is required.

11.4.3 Evaluation of tangent matrix

A tangent matrix for the non-linear plate formulation may be computed by a linear-
ization of Eq. (11.60). Formally, this may be written as

d(sTT) = 637 J [d(BI)& + BT d(s)] dA — d(6T1) = 0 (11.62)

We shall assume for simplicity that loading is conservative so that d(éI.,) = 0 and
hence the only terms to be linearized are the strain-displacement matrix and the
stress—strain relation. If we assume linear elastic behaviour, the relation between
the plate forces and strains may be written as

TP DP 0 0 EP

™ =10 D° 0 re (11.63)

M° 0o 0o D°| K

379



380 Non-linear structural problems

where for an isotropic homogeneous plate

1 v 0 )
D — Et 1 0 D — kEt 1 0 and D :LDP
1 — 2 ’ 20+v) [0 1) 12
0 (1-v)/2
(11.64)

Again, « is a shear correction factor which, for homogeneous plates, is usually taken
as 5/6. Thus, the linearization of the constitution becomes

d(TP) D> 0 07 (d(EP)
d@)={ d(T®) p=| 0 D° 0 d(T*)
d(MP) L0 o D°| (dK

D> 0 07 [B; Bj N
, i d(ug)

-0 D 0 0 B : (11.65)

(0 o0 D°||0 BY “

Using this result the material part of the tangent matrix is expressed as
D 0 0] |B} Bj

0 D 0 0 5 | d4
0 0 D°|| o BY

T

(KpM)aﬂ (K]M)(xﬁ

e (11.66)
(KM)aﬂ (KM)a;ﬁ

=| B!D;B;d4 =
, ‘

where Dt is the coefficient matrix from Eq. (11.63), and the individual parts of the
tangent matrix are

(Kfy)as = | (B2)' DB, dA

(K¥)os = | (BL)'D"B5dA (11.67)

(K}o)os = | [ (BL)D"B + (BY)TD"BY| da

We immediately recognize that the material part of the tangent matrix consists of
the same result as that of the small displacement analysis except for the added term
K%; which establishes coupling between membrane and bending behaviour.

The remainder of the computation for the tangent involves the linearization of the
non-linear part of the strain—displacement matrix, BL. As in the continuum problem
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discussed in Chapter 10 it is easiest to rewrite this term as

7™
d(w, 0 d(w )
dBYH'T’ = GI ) e TP
0 dw,) d(w, ’
: | ,
(T TR (dov)
=G} i (11.68)
L T% 17 | (dwy)

This may now be expressed in terms of finite element interpolations to obtain the
geometric part of the tangent as

™ TP

(K& )as = J G, G;d4 (11.69)
4 e, T)

which is inserted into the total geometric tangent as
0 0 }

11.70

Koo = |

This geometric matrix is also referred to in the literature as the initial stress matrix for
plate bending.

11.5 Large displacement theory of thin plates

The above theory may be specialized to the thin plate formulation by neglecting the
effects of transverse shearing strains as discussed in Chapter 4. Thus setting
Eyz = Eyz = 0in Eq. (11.41), this yields the result

Oy =wy and Oy =wy (11.71)

The displacements of the plate middle surface may then be approximated as

U u(X,Y) wy(X,Y)
u=<qu =4 v(X,Y) p —Z{wyX,Y) (11.72)
Uz w(X,Y) 0

Once again we can note that in-plane positions X and Y do not change significantly,
thus permitting substitution of x and y in the strain expressions to obtain Green—
Lagrange strains as

U,y +% (w_,x)2 Wox
E= v, +5(w,)? ~Z{ w,, »=Er—ZK" (11.73)
Uy +v,+w ow, PATI

where we have once again neglected square terms involving derivatives of the in-plane
displacements and terms in Z°. We note now that introduction of Eq. (11.71) modifies
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the expression for change in curvature to the same form as that used for thin plates in
Chapter 4.

11.5.1 Evaluation of strain-displacement matrices

For further formulation it is again necessary to establish expressions for the B and Ky
matrices. The finite element approximations to the displacements now involve only u,
v, and w. Here we assume these to be expressed in the form

{Z}NQ{QZ}NM](, (11.74)

w=N"w,+N’@, (11.75)

<

and

where now the rotation parameters are defined as
00 =[(00)a (0)a]=[0P)a (7,)a] (11.76)

The expressions for B and B are identical to those given previously except for the
definition of G. Owing to the form of the interpolation for w, we now obtain

Noo Note N
G, = Na} Nﬁ%}, Nﬁ}}] (11.77)
The variation in curvature for the thin plate is given by
Niw Nt Niw | (o,
5K = | NY, NP ONTL ] (60).
ONY,, 2NZ, 2N | L (600,
= BY 6w, (11.78)
Grouping the force terms, now without the shears T°, as
(T .
and the strain matrices as
B, — l?]" ﬁg] (11.80)
the virtual work expression may be written in matrix form as
S = éal JAfsgadA—énext:o (11.81)

and once again a non-linear problem in the form of Eq. (11.61) is obtained.
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11.5.2 Evaluation of tangent matrix

A tangent matrix for the non-linear plate formulation may be computed by a linear-
ization of Eq. (11.60). If we again assume linear elastic behaviour, the relation
between the plate forces and strains may be written as

{13;’}: [?)p ﬁbHEz} (11.82)

where the elastic constants are given in Eq. (11.64). Thus, the linearization of the
constitution becomes

D° 0 7B} 0] dp)
d(e) = { 0 Db} L b {d - } (11.83)
B; B | Ld(Ws)
Using this result the material part of the tangent matrix is expressed as
B)T 0 p* 0] |B) Bj
(Km)ap = J ( L)T b\T b ’ b d4
Al @)t Lo b0 B

(KP )a@ (KL )(yﬁ
= e (11.84)
(K]l(/l)zﬁ (Klla/l)aff
where K%, and K} are given as in Eq. (11.67), and KRA simplifies to
(KS0).s = | (B) DB d4 (11.85)

and now BY is given by Eq. (11.78). Using Eq. (11.77) the geometric matrix has
identical form to Egs (11.69) and (11.70).

11.6 Solution of large deflection problems

All the ingredients necessary for computing the ‘large deflection’ plate problem are
now available. Here we may use results from either the thick or thin plate formula-
tions described above. Below we describe the process for the thin plate formulation.

As a first step displacements 2" are found according to the small displacement
uncoupled solution. This is used to determine the actual strains by considering the
non-linear relations for EP and the linear curvature relations for K® defined in
Eq. (11.73). Corresponding stresses can be found by the elastic relations and a
Newton—Raphson iteration process set up to solve Eq. (11.61) [which is obtained
from Eq. (11.81)].

A typical solution which shows the stiffening of the plate with increasing deforma-
tion arising from the development of ‘membrane’ stresses was shown in Fig. 11.6."?
The results show excellent agreement with an alternative analytical solution. The
element properties were derived using for the in-plane deformation the simplest
bilinear rectangle and for the bending deformation the non-conforming shape func-
tion for a rectangle (Sec. 4.3, Chapter 4).
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Fig. 11.7 Clamped square plate: stresses.

An example of the stress variation with loads for a clamped square plate under
uniform dead load is shown in Fig. 11.7."® A quarter of the plate is analysed as
above with 32 triangular elements, using the ‘in-plane’ triangular element given in
Chapter 4 of Volume 1 together with a modified version of the non-conforming
plate bending element of Chapter 4.!” Many other examples of large plate deforma-
tion obtained by finite element methods are available in the literature.'™>

11.6.1 Bifurcation instability

In a few practical cases, as in the classical Euler problem, a bifurcation instability is
possible similar to the case considered for straight beams in Sec. 11.3. Consider the
situation of a plate loaded purely in its own plane. As lateral deflections, w, are not
produced, the small deflection theory gives an exact solution. However, even with
zero lateral displacements, the geometric stiffness (initial stress) matrix can be
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Table 11.2 Values of C for a simply supported square plate and compressed axially by 7',

Elements Non-compatible Compatible

in quarter

plate rectangle® 12d.o..f.  triangle’ 9d.o.f.  rectangle® 116d.0.f  quadrilateral®® 16d.o.f.
2x2 3.22

4x4 3.77 3.72 4.015 4.029

8x8 3.93 3.90 4.001 4.002

Exact C = 4.00."*
d.o.f. = degrees-of-freedom.

found while B* remains zero. If the in-plane stresses are compressive this matrix will
be such that real eigenvalues of the bending deformation can be found by solving the
eigenproblem

Kb dw = —AK§ dw (11.86)

in which A denotes a multiplying factor on the in-plane stresses necessary to achieve
neutral equilibrium (limit stability), and éw is the eigenvector describing the shape
that a ‘buckling’ mode may take.

At such an increased load incipient buckling occurs and lateral deflections can
occur without any lateral load. The problem is simply formulated by writing only
the bending equations with KRA determined as in Chapter 4 and with K& found
from Eq. (11.69).

Points of such incipient stability (buckling) for a variety of plate problems have
been determined using various element formulations.**° Some comparative results
for a simple problem of a square, simply supported plate under a uniform compres-
sion T, applied in one direction are given in Table 11.2. In this the buckling parameter
is defined as

T.2
c==22
D

where « is the side length of a square plate and D the bending rigidity.

The elements are all of the type described in Chapter 4 and it is of interest to note
that all those that are slope compatible always overestimate the buckling factor. This
result is obtained only for cases where the in-plane stresses TP are exact solutions to
the differential equations; in cases where these are approximate solutions this bound
property is not assured. The non-conforming elements in this case underestimate the
load, although there is now no theoretical lower bound available.

Figure 11.8 shows a buckling mode for a geometrically more complex case.”’ Here
again the non-conforming triangle was used.

Such incipient stability problems in plates are of limited practical importance. As
soon as lateral deflection occurs a stiffening of the plate follows and additional
loads can be carried. This stiffening was noted in the example of Fig. 11.6. Post-
buckling behaviour thus should be studied by the large deformation process described
in previous sections.!*°

385



386 Non-linear structural problems

Flange dimensions
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Fig. 11.8 Buckling mode of a square plate under shear: clamped edges, central hole stiffened by flange.?”

11.7 Shells

In shells, non-linear response and stability problems are much more relevant than in
plates. Here, in general, the problem is one in which the tangential stiffness matrix Ky
should always be determined taking the actual displacements into account, as now the
special case of uncoupled membrane and bending effects does not occur under load
except in the most trivial cases. If the initial stability matrix Kg is determined for
the elastic stresses it is, however, sometimes possible to obtain useful results concern-
ing the stability factor A, and indeed in the classical work on the subject of shell
buckling this initial stability often has been considered. The true collapse load may,
however, be well below the initial stability load and it is important to determine at
least approximately the deformation effects.

If the shell is assumed to be built up of flat plate elements, the same transformations as
given in Chapter 6 can be followed with the plate tangential stiffness matrix.>! If curved
shell elements are used it is important to revert to the equations of shell theory and to
include in these the non-linear terms.'>*~** Alternatively, one may approach the prob-
lem from a degeneration of solids, as described in Chapter 7 for the small deformation
case, suitably extended to the large deformation form. This approach was introduced by
several authors and extensively developed in recent years.35’46 A key to successful
implementation of this approach is the treatment of finite rotations. For details on
the complete formulation the reader is referred to the cited references.
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11.7.1 Axisymmetric shells

Here we consider the extension for the beam presented above in Sec. 11.2 to treat axi-
symmetric shells. We limit our discussion to the extension of the small deformation
case treated in Sec. 7.4 in which two-noded straight conical elements (see Fig. 7.2)
and reduced quadrature are employed. Local axes on the shell segment may be
defined by

R=cos¢(R— Ry) —sinp(Z — Z)

o (11.87)
Z=sin¢(R — Ry) +cosp(Z — Z,)
where Ry, Z, are centred on the element as
Ry =73 (R +Ry) (11.88)
Zy=3(Z\+2,)

with R;, Z; nodal coordinates of the element. The deformed position with respect to
the local axes may be written in a form identical to Eq. (11.7). Accordingly, we have

F=R+u(R)+ ZsinB(R)

L , (11.89)
Z=w(R) + Z cos (R)

To consider the axisymmetric shell it is necessary to integrate over the volume of
the shell and to include the axisymmetric hoop strain effects. Accordingly, we now
consider a segment of shell in the R—Z plane (i.e. X is replaced by the radius R).
The volume of the shell in the reference configuration is obtained by multiplying
the beam volume element by the factor 2nR. In axisymmetry the deformation
gradient in the tangential (hoop) direction must be included. Accordingly, in the
local coordinate frame the deformation gradient is given by

[1 + i g+ Z(cos B) B ] 0 sin 3
Fy = 0 r/R 0 (11.90)
W g — Z (sin 3) Bzl 0 cos 3

Following the same procedures as indicated for the beam we obtain the expressions
for Green—Lagrange strains as

1 2 sin
ETT:U+<Z) +Z<1+Z>6:E(}T+ZK¥T (11.91)

2Epz = (1 +ug)sinf+wgrcos3=T

where A = (14 g)cos 3 —w gsin 3, and the additional hoop strain results in two
additional strain components, EYr and K.
With the above modifications, the virtual work expression for the shell now becomes

oIl = J (6EggSrir + OE7r Sty + 20ER; Sgz) AV — 61l = 0 (11.92)
Q
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in which S77 is the hoop stress in the cylindrical direction. The remainder of the
development follows the procedures presented in Sec. 11.2.1 and is left as an exercise
for the reader. It is also possible to develop a small rotation theory following the
methods described in Sec. 11.2.2.

Here we demonstrate the use of the axisymmetric shell theory by considering a
shallow spherical cap subjected to an axisymmetric vertical ring load (Fig. 11.9).
The case where the ring load is concentrated at the crown has been examined
analytically by Biezeno?’ and Reissner.*® Solutions using finite difference methods
on the equations of Reissner are presented by Mescall.* Solutions by finite elements
have been presented earlier by Zienkiewicz and co-workers.”>” Owing to the shallow
nature of the shell, rotations remain small, and excellent agreement exists between the
finite rotation and small rotation forms.

11.7.2 Shallow shells - co-rotational forms

In the case of shallow shells the transformations of Chapter 6 may conveniently be
avoided by adopting a formulation based on Marguerre shallow shell theor3/.2375 1,32
A simple extension to a shallow shell theory for the formulation presented for thin
plates may be obtained by replacing the displacements by

u Uy +u
v — < v+ (11.93)
w wo +w

in which u, vy, and w, describe the position of the shell reference configuration from
the X—Y plane. Now the current configuration of the shell (where, often, u, and v, are
taken as zero) may be described by

xl(t) = X+u0(Xa Y) +M(X7 Y> t) - Z[WO,X(Xa Y) +W.,X(Xa Ya t)]
X)) =Y +0y(X,Y) +0(X, Y, 1) = Z[woy(X,Y) +wy(X,Y,1)] (11.94)
x3(0) =wo(X, V) +w(X, Y1)

where a time ¢ is introduced to remind the reader that at time zero the reference
configuration is described by

XI(O) = X+ l/l()(X, Y) — ZW()‘V)((X, Y)
X(0) =Y +09(X,Y) = Zwyy(X,Y) (11.95)
x3(0) = wo (X, Y)

where u, v, w vanish. Using these expressions we can compute the deformation gradient
for the deformed configuration and for the reference configuration. Denoting these by
F;; and FJ), respectively, we can deduce the Green—Lagrange strains from

Ey =% [FyFiyy — Fy F})] (11.96)

The remainder of the derivations are straightforward and left as an exercise for the
reader. This approach may be generalized and used also to deduce the equations
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Fig. 11.9 Spherical cap under vertical ring load: (a) load—deflection curves for various ring loads. Spherical
cap under vertical ring load: (b) geometry definition and deflected shape.
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for deep shells.** Alternatively, we can note that as finite elements become small they
are essentially shallow shells relative to a rotated plane. This observation led to the
development of many general shells based on a concept named ‘co-rotational’.
Here the reader is referred to the literature for additional details.>®

11.7.3 Stability of shells

It is extremely important to emphasize again that instability calculations are
meaningful only in special cases and that they often overestimate the collapse loads
considerably. For correct answers a full non-linear process has to be invoked. A
progressive ‘softening’ of a shell under load is shown in Fig. 11.10 and the result is
well below the one given by linearized buckling.'? Figure 11.11 shows the progressive
collapse of an arch at a load much below that given by the linear stability value. The
solution from the finite rotation beam formulation is compared with an early solution
obtained by Marcal® who employed small-angle approximations. Here again it is
evident that use of finite angles is important.

The determination of the actual collapse load of a shell or other slender structure pre-
sents obvious difficulties (of a kind already discussed in Chapter 2 and encountered
above for beams), as convergence of displacements cannot be obtained when load is
‘increased’ near the peak carrying capacity. In such cases one can proceed by prescrib-
ing displacement increments and computing the corresponding reactions if only one
concentrated load is considered. By such processes, Argyris69 and others***° succeeded
in following a complete snap-through behaviour of a shallow arch.

’/
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£ /
] y
=
0.08
'6/ @/ 20 in
«—20 in%»‘
t=0.125in
100 in y=0.3
E =45 x 10* Ib/in?
| |
0 0.2 0.4 0.6 0.8

10 w, (in)

Fig. 11.10 Deflection of cylindrical shell at centre: all edges clamped.'?
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Fig. 11.11 “Initial stability’ and incremental solution for large deformation of an arch under central load p.®®

Pian and Tong’® show how the process can be generalized simply when a system of
proportional loads is considered. This and other ‘arc-length’ methods are considered
in Sec. 2.2.6.

11.8 Concluding remarks

This chapter presents a summary of approaches that can be used to solve problems in
structures composed of beams (rods), plates, and shells. The various procedures
follow the general theory presented in Chapter 10 combined with solution methods
for non-linear algebraic systems as presented in Chapter 2. Again we find that
solution of a non-linear large displacement problem is efficiently approached by
using a Newton—Raphson type approach in which a residual and a tangent matrix
are used. We remind the reader, however, that use of modified approaches, such as
use of a constant tangent matrix, is often as, or even more, economical than use of
the full Newton—Raphson process.

If a full load deformation study is required it has been common practice to proceed
with small load increments and treat, for each such increment, the problem by a form
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of the Newton—Raphson process. It is recommended that each solution step be
accurately solved so as not to accumulate errors. We have observed that for problems
which have a limit load, beyond which the system is stable, a full solution can be
achieved only by use of an ‘arc-length’ method (except in the trivial case of one
point load as noted above).

Extension of the problem to dynamic situations is readily accomplished by adding
the inertial terms. In the geometrically exact approach in three dimensions one may
encounter quite complex forms for these terms and here the reader should consult
literature on the subject before proceeding with detailed developments.>™> For the
small-angle assumptions the treatment of rotations is identical to the small deforma-
tion problem and no such difficulties arise.
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12

Pseudo-rigid and
rigid—flexible bodies

12.1 Introduction

Many situations are encountered where treatment of the entire system as deformable
bodies is neither necessary nor practical. For example, the frontal impact of a vehicle
against a barrier requires a detailed modelling of the front part of the vehicle but the
primary function of the engine and the rear part is to provide inertia, deformation
being negligible for purposes of modelling the frontal impact. A second example,
from geotechnical engineering, is the modelling of rock mass landslides or interaction
between rocks on a conveyor belt where deformation of individual blocks is second-
ary. In this chapter we consider briefly the study of such systems.

The above problem classes divide themselves into two further sub-classes: one
where it is necessary to include some simple mechanisms of deformation in each
body (e.g. an individual rock piece) and the second in which the individual bodies
have no deformation at all. The first class is called pseudo-rigid body deformation'
and the second rigid-body behaviour.? Here we wish to illustrate how such behaviour
can be described and combined in a finite element system. For the modelling of
pseudo-rigid body analyses we follow closely the work of Cohen and Muncaster'
and the numerical implementation proposed by Solberg and Papadopoulos.® The
literature on rigid body analysis is extensive, and here we refer the reader to papers
for additional details on methods and formulations beyond those covered here.*~*!

12.2 Pseudo-rigid motions

In this section we consider the analysis of systems which are composed of many small
bodies, each of which is assumed to undergo large displacements and a uniform
deformation.” The individual bodies which we consider are of the types shown in
Fig. 12.1. In particular, a faceted shape can be constructed directly from a finite
element discretization in which the elements are designated as all belonging to a

* Higher-order approximations can be included using polynomial approximation for the deformation of
each body.
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(a (b)
Fig. 12.1 Shapes for pseudo-rigid and rigid body analysis: (a) ellipsoid; (b) faceted body.

single solid object or the individual bodies can be described by simple geometric forms
such as discs or ellipsoids.
A homogeneous motion of a body may be written as

Gi( Xy, t) = ri(t) + Fy (1) [X; — R] (12.1)

in which X7 is position, ¢ is time, R; is some reference point in the undeformed body, r;
is the position of the same point in the deformed body, and F}; is a constant deforma-
tion gradient. We note immediately that at time zero the deformation gradient is the
identity tensor (matrix) and Eq. (12.1) becomes

¢i(X1,0) = 1r;(0) + 6 [ X7 — Ro] = 19(0) + 6 X7 — 6y R = 6 X (12.2)

where r;(0) = 6; R; by definition. The behaviour of solids which obey the above
description is sometimes referred to as analysis of pseudo-rigid bodies." A treatment
by finite elements has been considered by Solberg and Papadopoulos,’ and an
alternative expression for motions restricted to incrementally linear behaviour has
been developed by Shi, and the method is commonly called discontinuous deformation
analysis (DDA).?> The DDA form, while widely used in the geotechnical community, is
usually combined with a simple linear elastic constitutive model and linear strain—dis-
placement forms which can lead to large errors when finite rotations are encountered.

Once the deformation gradient is computed, the procedures for analysis follow the
methods described in Chapter 10. It is, of course, necessary to include the inertial
term for each body in the analysis. No difficulties are encountered once a shape of
each body is described and a constitutive model is introduced. For elastic behaviour
it is not necessary to use a complicated model, and here use of the Saint-Venant—
Kirchhoff relation is adequate — indeed, if large deformations occur within an
individual body the approximation of homogeneous deformation generally is not
adequate to describe the solution. The primary difficulty for this class of problems
is modelling the large number of interactions between bodies by contact phenomena
and here the reader is referred to Chapter 10 and references on the subject for
additional information on contact and other details.”>*
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12.3 Rigid motions

The pseudo-rigid body form can be directly extended to rigid bodies by using the
polar decomposition on the deformation tensor. The polar decomposition of the
deformation gradient may be given as>*°

Fil == A,’J U_]] Where A”AU = 61] and AiIA/[ = 61/ (123)

Here A;; is a rigid rotation™ and U, is a stretch tensor (that has eigenvalues )\, as
defined in Chapter 10). In the case of rigid motions the stretches are all unity and
U,; simply becomes an identity. Thus, a rigid body motion may be specified as
Gi( Xy, 1) = r;(2) + Ny (1) [ X7 — Ry] (12.4)
or, in matrix form, as
o¢X, 1) =r(t)) + A() [ X —R] (12.5)

Alternatively, we can express the rigid motion using Eq. (12.1) and impose constraints
to make the stretches unity. For example, in two dimensions we can represent the
motion in terms of the displacements of the vertices of a triangle and apply constraints
that the lengths of the triangle sides are unchanged during deformation. The con-
straints may be added as Lagrange multipliers or other constraint methods and the
analysis may proceed directly from a standard finite element representation of the
triangle. Such an approach has been used in reference 27 with a penalty method
used to impose the constraints. Here we do not pursue this approach further and
instead consider direct use of rigid body motions to construct the formulation.

For subsequent use we note the form of the variation of a rigid motion and its
incremental part. These may be expressed as

5¢ = 6r+ 60A[X — R]
dp = dr+ dOA[X — R]
Using Eq. (12.5) these may be simplified to
6p=06r—yoé0 where y=x-—r
(12.6)
dd =dr—ydo

where d¢ and 60 are incremental and variational rotation vectors, respectively.
In a similar manner we obtain the velocity for the rigid motion as

d=i—jo (12.7)

in which r is translational velocity and @ angular velocity, both at the centre of mass.
The angular velocity is obtained by solving

A=A (12.8)
or

A=AQ (12.9)

* Often literature denotes this rotation as R;;; however, here we use R; as a position of a point in the body
and to avoid confusion use A;; to denote rotation.
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where € is the reference configuration angular velocity.® This is clearer by writing the
equations in indicial form given by

Njp=wiNyp =AMy Qp (12.10)

where the velocity matrices are defined in terms of vector components and give the
skew symmetric form

0 )
wj = w3y 0 —w (12.11)
—W) w1 0

and similarly for €2;;. The above form allows for the use of either the material angular
velocity or the spatial one. Transformation between the two is easily performed since
the rigid rotation must satisfy the orthogonality conditions

ATA=AAT =1 (12.12)
at all times. Using Eqs (12.8) and (12.9) we obtain

®=AQA" (12.13)

or by transforming in the opposite way

Q=A"eA (12.14)

12.3.1 Equations of motion for a rigid body

If we consider a single rigid body subjected to concentrated loads f, applied at points
whose current position is x, and locate the reference position for R at the centre of
mass, the equations of equilibrium are given by conservation of linear momentum

p=> f,=f p=mi (12.15)
a

where p defines a linear momentum, f is a resultant force and total mass of the body is
computed from

m= JQ podV (12.16)

and conservation of angular momentum

h:Z(Xa—r)xfa:m; T=Io (12.17)

a

where w is the angular momentum of the rigid body, m is a resultant couple and I is the
spatial inertia tensor.
The spatial inertia tensor (matrix) I is computed from

T=AJA" (12.18)
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where J is the inertia tensor (matrix) computed from an integral on the reference
configuration and is given by

sz po [(Y'Y)IT—=YY']dV where Y=X-R (12.19)
Q

Thus, description of an individual rigid body requires locating the centre of mass
R and computing the total mass m and inertia matrix J. It is then necessary to
integrate the equilibrium equations to define the position r and the orientation of
the body A.

12.3.2 Construction from a finite element model

If we model a body by finite elements, as described throughout the volumes of this
book, we can define individual bodies or parts of bodies as being rigid. For each
such body (or part of a body) it is then necessary to define the total mass, inertia
matrix, and location of the centre of mass.

This may be accomplished by computing the integrals given by Eqgs (12.16) and
(12.19) together with the relation to determine the centre of mass given by

mR:J poX dV (12.20)
Q

In these expressions it is necessary only to define each point in the volume of an
element by its reference position interpolation X. For solid (e.g., brick or tetrahedral)
elements such interpolation is given by Eq. (10.55) which in matrix form becomes
(omitting the summation symbol)

X=N,X, (12.21)

This interpolation may be used to determine the volume element necessary to carry
out all the integrals numerically (see Chapter 9 of Volume 1).
The total mass may now be computed as

m= Z (JQ 00 dV) (12.22)

where €2, is the reference volume of each element e. Use of Eq. (12.21) in Eq. (12.20) to
determine the centre of mass now gives

1
R=— N,dV | X 12.23
(], wrear)x, (1223)

and finally the reference inertia tensor (matrix) as

J=> My[(YoY)I-Y,Yi];  Y,=X,-R (12.24)

where

Q,
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The above definition of Y,, tacitly assumes that >, N, = 1. If other interpolations are
used to define the shape functions (e.g. hierarchical shape functions) it is necessary to
modify the above procedure to determine the mass and inertia matrix.

12.3.3 Transient solutions

The integration of the translational rigid term r may be performed using any of the
methods described in Chapter 18 of Volume 1 or indeed by other methods described
in the literature. The integration of the rotational part can also be performed by many
schemes, however, it is important that updates of the rotation produce discrete time
values for rigid rotations which retain an orthonormal character, that is, the A, must
satisfy the orthogonality condition given by Eq. (12.12). One procedure to obtain this
is to assume that the angular velocity within a time increment is constant, being
measured as

1
At
in which At is the time increment between ¢, and ¢, |, 0 is the increment of rotation
during the time step, and 0 < « < 1. The approximation

o), ,=-—0 (12.26)

0,0 =(l-a)o, + oo, (12.27)

is used to define intermediate values in terms of those at ¢, and ¢, , . Equation (12.8)
now becomes a constant coefficient ordinary differential equation which may be
integrated exactly, yielding the solution

A(t) = exp[0(r — 1) /AL A, t, <t <t, (12.28)

In particular at ¢, , we obtain

An+a = exp[ae] An

This may also be performed using the material angular velocity ©.% Many algorithms
exist to construct the exponential of a matrix, and the closed-form expression given by
the classical formula of Euler and Rodrigues (e.g. see Wittaker™) is quite popular.
This is given by

sin (0] 1 sin® 0] /2

0> where 0| =070 12 12.29
DRERTHE 01 = 0% (1229)

expl0] =1+

This update may also be given in terms of quaternions and has been used for
integration of both rigid body motions as well as for the integration of the rotations
appearing in three-dimensional beam formulations (see Chapter 11).%* Another
alternative to the direct use of the exponential update is to use the Cayley transform
to perform updates for A which remain orthonormal.

Once the form for the update of the rigid rotation is defined any of the integration
procedures defined in Chapter 18 of Volume 1 may be used to advance the incre-
mental rotation by noting that @ or ® (the material counterpart) are in fact the
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change from time ¢, to ¢, ;. The reader also is referred to reference 8 for additional
algorithms directly based on the GN11 and GN22 methods presented in Chapter 18
of Volume 1. Here forms for conservation of linear and angular momentum are of
particular importance.

12.4 Connecting a rigid body to a flexible body

In some analyses the rigid body is directly attached to flexible body parts of the
problem [Fig. 12.2(a)]. Consider a rigid body that occupies the part of the domain
denoted as (2, and is ‘bonded’ to a flexible body with domain 2. In such a case
the formulation to ‘bond’ the surface may be performed in a concise manner using
Lagrange multiplier constraints. We shall find that these multiplier constraints can
be easily eliminated from the analysis by a local solution process, as opposed to the
need to carry them to the global solution arrays as was the case in their use in contact
problems (see Sec. 10.8).

A
(a) (b)

Fig. 12.2 Lagrange multiplier constraint between flexible and rigid bodies: (a) rigid—flexible body;
(b) Lagrange muiltipliers.

12.4.1 Lagrange multiplier constraints

A simple two-dimensional rigid—flexible body problem is shown in Fig. 12.2(a) in
which the interface will involve only three-nodal points. In Fig. 12.2(b) we show an
exploded view between the rigid body and one of the elements which lies along the
rigid—flexible interface. Here we need to enforce that the position of the two interface
nodes for the element will have the same deformed position as the corresponding
point on the rigid body. Such a constraint can easily be written using Eq. (12.4) as

Ca = l‘([) + A(l) [Xa - R] - X(x(l) =0 (1230)
in which the subscript « denotes a node number. We can now modify a functional to

include the constraint using a classical Lagrange multiplier approach in which we add
the term

Hrf =hCo =1, [Xa(l) - l‘(l) - A(t)[Xa - RH (1231)
Taking the variation we obtain
O,y = 6Ag [Xq — 1 — A[X, — R]] 4+ A, [6x, — or — 60A[X, — R]] (12.32)
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From this we immediately obtain the constraint equation and a modification to the
equilibrium equations for each flexible node and the rigid body. Accordingly, the
modified variational principle may now be written for a typical node « on the inter-
face of the rigid body as

M, v, +M,5v5 + P, —1,

M(u/‘.IV + M(yﬁ‘.’ﬁ =+ Pa - fa + )"a

OIT + 011, = [(5xu ox, oOr 60 ‘”“u] p—f—»%, =0

f—m— §ohy

x, —r—A[X, — R]

(12.33)
where y, = x, —r are the nodal values of y, § are any other rigid body nodes
connected to node « and u, v are flexible nodes connected to node a.

Since the parameters x,, enter the equations in a linear manner we can use the
constraint equation to eliminate their appearance in the equations. Accordingly,
from the variation of the constraint equation we may write

Xy = [ — 7] (12.34)
which permits the remaining equations in Eq. (12.33) to be rewritten as
M, v, +M,3v; + P, — 1,
OIT + 611, = [6xu or (59] p—1tM,, v, + MgV +P, — 1, =0
T—m-— yI(MaV‘.’I/ + M(yﬂ‘.’@ + Pa - fa)
(12.35)

For use in a Newton—Raphson solution scheme it is necessary to linearize Eq.
(12.35). This is easily achieved

dx,
(Kuy T (K;LJS)T 0 0 dx
d((SH) + d((SHrf) = [6XM or 69] (K(W)T (K(x;ﬁ)T KI'IJ" 0 d ’
~T ~T 6 r
—y.(K Vo (K5 0 K
YQ( (w)T ya( ocd)T T 40
(12.36)

Once again this form may be reduced using the equivalent of Eq. (12.34) for an
incremental d@x; to obtain

(KW>T (KM/B)T _(KM/B)TS’H
d(SIT) + d(oILy) = [6x, ér 60]| (Ku)r  Ki+ (Kug)r —(Kap)1¥s
VoK)t —Va(Kap)r (KT + o (Kop)r¥s)
dx,,
X dr (12.37)

do
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Combining all the steps we obtain the set of equations for each rigid body as

(K/JI/)T (K/lﬂ)T - (K/tﬁ)Ty{i dXV ‘II/L
(K(YI/)T [K?l" + (K(Yﬁ)T] _(K<¥/3)Ty‘3 dr = f— p + ‘I’a
VoK)t —VaKap)r  Kr+¥a(Kop)rysl | { 40 m— i+ ¥, %,
(12.38)
in which ¥, and ¥, are the residuals from the finite element calculation at node o and

1, respectively. We recall from Chapter 10 that each is given by a form
Y, = f(y - Pa(o-) - M(YI/“’I/ - Ma‘ﬁvﬁ (1239)

which is now not zero since total balance of momentum includes the addition of
the A,.

The above steps to compute the residual and the tangent can be performed in each
element separately by noting that

ho = A (12.40)

where A{, denotes the contribution from element e. Thus, the steps to constrain a
flexible body to a rigid body are once again a standard finite element assembly process
and may easily be incorporated into a solution system.

The above discussion has considered the connection between a rigid body and a
body which is modelled using solid finite elements (e.g. quadrilateral and hexahedral
elements in two and three dimensions, respectively). It is also possible directly to
connect beam elements which have nodal parameters of translation and rotation.
This is easily performed if the rotation parameters of the beam are also defined in
terms of the rigid rotation A. In this case one merely transforms the rotation to
be defined relative to the reference description of the rigid body rotation and
assembles the result directly into the rotation terms of the rigid body. If one uses
a rotation for both the beam and the rigid body which is defined in terms of the
global Cartesian reference configuration no transformation is required. Shells can
be similarly treated; however, it is best then to define the shell directly in terms of
three rotation parameters instead of only two at points where connection is to be
performed.“’32

12.5 Multibody coupling by joints

Often it is desirable to have two (or more) rigid bodies connected in some specified
manner. For example, in Fig. 12.3 we show a disc connected to an arm. Both are
treated as rigid bodies but it is desired to have the disc connected to the arm in
such a way that it can rotate freely about the axis normal to the page. This type of
motion is characteristic of many rotating machine connections and it as well as
many other types of connections are encountered in the study of rigid body
motions.** This type of interconnection is commonly referred to as a joint. In
quite general terms joints may be constructed by a combination of two types of
simple constraints: translational constraints and rotational constraints.
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12.5.1 Translation constraints

The simplest type of joint is a spherical connection in which one body may freely
rotate around the other but relative translation is prevented. Such a situation is
shown in Fig. 12.3 where it is evident the spinning disc must stay attached to the
rigid arm at its axle. Thus it may not translate relative to the arm in any direction
(additional constraints are necessary to ensure it rotates only about the one axis —
these are discussed in Sec. 12.5.2). If a full translation constraint is imposed a
simple relation may be introduced as

C=x“—x"=0 (12.41)

where a and b denote two rigid bodies. Thus, addition of the Lagrange multiplier
constraint

I = 3 [x@ —x] (12.42)

imposes the spherical joint condition. It is necessary only to define the location for the
spherical joint in the reference configuration. Denoting this as X; (which is common
to the two bodies) and introducing the rigid motion yields a constraint in terms of the
rigid body positions as

I; = &) [ + A9, — RW) —r® — A®/(X; - R?))] (12.43)

The variation and subsequent linearization of this relation yields the contribution to
the residual and tangent matrix for each body, respectively. This is easily performed
using relations given above and is left as an exercise for the reader.

If the translation constraint is restricted to be in one direction with respect to, say,
body a it is necessary to track this direction and write the constraint accordingly. To
accomplish this the specific direction of the body « in the reference configuration is
required. This may be computed by defining two points in space X; and X, from

Fig. 12.3 Spinning disc constrained by a joint to a rigid arm.
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which a unit vector V is defined by
X, X

V= 227821
X — X

(12.44)
The direction of this vector in the current configuration, v, may be obtained using the
rigid rotation for body a

v=AWYV (12.45)
A constraint can now be introduced into the variational problem as
I = X\ VI AD)T[r@ 4 A(X, - R@) — 1) — AP(X;, — R} (12.46)

where, owing to the fact there is only a single constraint direction, the Lagrange
multiplier is a scalar ); and, again, X; denotes the reference position where the
constraint is imposed.

The above constraints may also be imposed by using a penalty function. The most
direct form is to perturb each Lagrange multiplier form by a penalty term. Accord-
ingly, for each constraint we write the variational problem as

I

=X —5-A

T (12.47)
J

where it is immediately obvious that the limit k; — oo yields exact satisfaction of the
constraint. Use of a large k; and variation with respect to \; gives

1
and may easily be solved for the Lagrange multiplier as
N =k G (12.49)

which when substituted back into Eq. (12.47) gives the classical form
L= G (12.50)

The reader will recognize that Eq. (12.47) is a mixed problem, whereas, Eq. (12.50) is
irreducible. An augmented lagrangian form is also possible following the procedures
introduced in Volume 1 and used in Chapter 10 for contact problems.

12.5.2 Rotation constraints

A second kind of constraint that needs to be considered relates to rotations. We have
already observed in Fig. 12.3 that the disc is free to rotate around only one axis.
Accordingly, constraints must be imposed which limit this type of motion. This
may be accomplished by constructing an orthogonal set of unit vectors V; in the
reference configuration and tracking the orientation of the deformed set of axes for
each body as

vgc):(S,-,A(‘?V, for c=ab viV, =6, (12.51)
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A rotational constraint which imposes that axis i of body a remain perpendicular to
axis j of body » may then be written as

(1)1 = VI AO)TAPY, = 0 (12:52)

Example: revolute joint

As an example, consider the situation shown for the disc in Fig. 12.3 and define the
axis of rotation in the reference configuration by the Cartesian unit vectors E; (i.e.
V; = E;). If we let the disc be body « and the arm body b the set of constraints can
be written as (where v; is axis of rotation)

<@ _ 5©

C={ "W V=0 (12.53)
COREE
and included in a formulation using a Lagrange multiplier form
T
I =2 G (12.54)

The modifications to the finite element equations are obtained by appending the
variation and linearization of Eq. (12.54) to the usual equilibrium equations. Here
five Lagrange multipliers are involved to impose the three translational constraints
(spherical joint) and the angle constraints for the rotating disc. The set of constraints
is known as a revolute joint.>

12.5.3 Library of joints

Translational and rotational constraints may be combined in many forms to develop
different types of constraints between rigid bodies. For the development it is necessary
to have only the three types of constraints described above. Namely, the spherical
joint, a single translational constraint, and a single rotational constraint. Once
these are available it is possible to combine them to form classical constraint joints
and here the reader is referred to the literature for the many kinds commonly
encountered.>*7*

The only situation that requires special mention is the case when a series of rigid
bodies is connected together to form a closed loop. In this case the method given
above can lead to situations in which some of the joints are redundant. Using Lagrange
multipliers this implies the resulting tangent matrix will be singular and, thus, one
cannot obtain solutions. Here a penalty method provides a viable method to circum-
vent this problem. The penalty method introduces elastic deformation in the joints
and in this way removes the singular problem. If necessary an augmented lagrangian
method can be used to keep the deformation in the joint within required small
tolerances. An alternative to this is to extract the closed loop rigid equations from
the problem and use singular valued decomposition® to identify the redundant
equations. These may then be removed by constructing a pseudo-inverse for the tangent
matrix of the closed loop. This method has been used successfully by Chen to solve
single loop problems.**
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Rigid disc "

Fig. 12.4 Rigid—flexible model for spinning disc: (a) problem definition, solutions at time; (a) problem defini-
tion, solutions at time; (b) t = 2.5 units; (c) t = 5.0 units; (d) t = 7.5 units; (e) t = 10.0 units; (f) t = 12.5 units;
(g) t = 15.0 units; (h) t = 17.5 units.
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12.6 Numerical examples
12.6.1 Rotating disc

As a first example we consider a problem for the rotating disc on a rigid arm which is
attached to a deformable base as shown in Fig. 12.4. The finite element model is con-
structed from four-noded displacement elements in which a Saint-Venant—Kirchhoff
material model is used for the elastic part. The elastic properties in the model are
E =10000 and v = 0.25, with a uniform mass density py = 5 throughout. The disc
and arm are made rigid by using the procedures described in this chapter. The disc
is attached to the arm by means of a revolute joint with the constraints imposed
using the Lagrange multiplier method. The rigid arm is constrained to the elastic
support by using the local Lagrange multipler method described in Sec. 12.4. The
problem is excited by a constant vertical load applied at the revolute joint and a
torque applied to spin the disc. Each load is applied for the first 10 units of time.
The mesh and configuration are shown in Fig. 12.4(a). Deformed positions of the
model are shown at 2.5 unit intervals of time in Figs 12.4(b)—12.4(h). A marker
element shows the position of the rotating disc. The displacements at the revolute
joint and the radial exterior point at the marker element location are shown in Fig. 12.5.

12.6.2 Beam with attached mass

As a second example we consider an elastic cantilever beam with an attached end
mass of rectangular shape. The beam is excited by a horizontal load applied at the
top as a triangular pulse for two units of time. The rigid mass is attached to the
top of the beam by using the Lagrange multiplier method described in Sec. 12.4
and here it is necessary to constrain both the translation and the rotation parameters
of the beam. The beam is three-dimensional and has an elastic modulus of
E =100000 and a moment of inertia in both directions of I;; = I, = 12. The
beam mass density is low, with a value of p, = 0.02. The tip mass is a cube with

1 15
10 —Horizontai
---Verticai AN
AN S e
: 5
v
‘\‘ ," ":"\

Displacement
o
o 6]
L—]
S~
-{
e
-{
s
-
—'\
.-:2

)
[y
T
2
Displacement
[
(6]
’
'O
&"
L
‘/

‘s
\\
0/— )

I/

—05 W -10 3
—_ Hori;or}tai V V V -15 \ /
» -==Verticai 00 \ /
0 10 20 30 40 0 10 20 30 40
Time Time
(@ (b)

Fig. 12.5 Displacements for rigid—flexible model for spinning disc. Displacement at: (a) revolute; (b) disc rim.
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\\”\W\
\\ / =

Fig. 12.6 Cantilever with tip mass: (a) t = 2 units; (b) t = 4 units; (¢) t = 6 units; (d) t = 10 units; (e) t = 12
units; (f) t = 14 units; (g) t = 16 units; (h) t = 18 units; (i) t = 20 units.

side lengths 4 and mass density py = 1. The shape of the beam at several instants of
time is shown in Fig. 12.6 and it is clear that large translation and rotation is
occurring and also that the rigid block is correctly following a constrained rigid
body motion.
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13

Computer procedures for finite
element analysis

13.1 Introduction

In this chapter we describe extensions to the program presented in Volume 1 to permit
solution of transient non-linear problems that are modelled by a finite element pro-
cess. The material included in this chapter should be considered as supplementary
to information contained in Volume 1, Chapter 20.! Accordingly, throughout this
chapter reference will be made to appropriate information in the first volume. It is
suggested, however, that the reader review the material there prior to embarking
on a study of this chapter.

The program described in this volume is intended for use by those who are under-
taking a study of the finite element method and wish to implement and test specific
elements or specific solution steps. The program also includes a library of simple
elements to permit solution to many of the topics discussed in this and the first
volume. The program is called FEAPpv to emphasize the fact that it may be used
as a personal version system. With very few exceptions, the program is written
using standard Fortran, hence it may be implemented on any personal computer,
engineering workstation, or main frame computer which has access to a Fortran 77
or Fortran 90/95 compiler.

It still may be necessary to modify some routines to avoid system-dependent
difficulties. Non-standard routines are restricted to the graphical interfaces and file
handling for temporary data storage. Users should consult their compiler manuals
on alternative options when such problems arise.

Users may also wish to add new features to the program. In order to accommodate
a wide range of changes several options exist for users to write new modules without
difficulty. There are options to add new mesh input routines through addition of
routines named UMESHn and to include solution options through additions of routines
named UMACRn. Finally, the addition of a user developed element module is accom-
modated by adding a single subprogram named ELMTnn. In adding new options the
use of established algorithms as described in references 2—6 can be very helpful.

The current chapter is divided into several sections that describe different aspects of
the program. Section 13.2 summarizes the additional program features and the
command language additions that may be used to solve general linear and non-linear
finite element problems. Some general solution strategies and the related command
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language statements for using the system to solve non-linear transient problems are pre-
sented in Sec. 13.3. The program FEAPpv includes capabilities to solve both first-order
(diffusion type) and second-order (vibration/wave type) ordinary differential equations
in time. In Sec. 13.3, the description of the eigensystem included in FEAPpv with the
required solution statements for its use are presented. Here a simultaneous vector itera-
tion algorithm (subspace method) is used to extract the eigenpairs nearest to a specified
shift of a symmetric tangent matrix. Hence, the eigensystem may be used with either
linear or non-linear problems. Non-linear problems are often difficult to solve and
time-consuming in computer resources. In many applications the complete analysis
may not be performed during one execution of the program; hence, techniques to
stop the program at key points in the analysis for a later restart to continue the solution
are presented in Sec. 13.4. This section completes the description of new and extended
solution options that have been added to the program.

Section 13.5 describes the solution steps for some typical problems that can be
solved by using FEAPpv. Finally, Sec. 13.6 includes information on how to obtain
the source code as well as a user manual and support information for the program
FEAPpv.

The program contained in this chapter has been developed and used in an educa-
tional and research environment over a period of nearly 25 years. The concept of
the command language solution algorithm has permitted several studies that cover
problems that differ widely in scope and concept, to be undertaken at the same
time without need for different program systems. Unique features for each study
may be provided as new solution commands. The ability to treat problems whose
coefficient matrix may be either symmetric or unsymmetric often proves useful for
testing the performance of algorithms that advocate substitution of a symmetrized
tangent matrix in place of an unsymmetric matrix resulting from a consistent linear-
ization process. The element interface is quite straightforward and, once understood,
permits users to test rapidly new types of finite elements.

We believe that the program in this book provides a very powerful solution system
to assist the interested reader in performing finite element analyses. The program
FEAPpv is by no means a complete software system that can be used to solve any
finite element problem, and readers are encouraged to modify the program in any
way necessary to solve their particular problem. While the program has been tested
on several sample problems, it is likely that errors and mistakes still exist within
the program modules. The authors need to be informed about these errors so that
the available system can be continuously updated. We also welcome readers’
comments and suggestions concerning possible future improvements.

13.2 Description of additional program features

Description of the command language given in Chapter 20 of Volume 1 is here extended
to permit solution of a broad class of non-linear applications. The principal additions
relate to the solution of non-linear static and transient problems and adds the descrip-
tion to consider applications which have unsymmetric tangent ‘stiffness’ matrices. In
addition, the program introduces the BFGS (Broyden—Fletcher—Goldfarb—Shanno)
algorithm and a line-search algorithm which may be invoked to permit convergence
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Table 13.1 List of new command language statements

Columns Description

1-4 16-19  31-45 46-60 61-75

BACK Back-up to restart a time step

TRAN SSi1 Vi Set solution algorithm to SS11; V1 is value of 6

TRAN SS22 Vi V2 Set solution algorithm to SS22; V1, V2 are values of 6, 6,

TRAN GN22 Vi V2 Set solution algorithm to GN22; V1, V2 are values of 3, v

TRAN Vi V2 Same as TRAN GN22

BFGS N1 V2 Performs N1 BFGS steps with line-search tolerance set to V2

EIGV N1 Output N1 eigenpairs (after SUBS)

IDEN Set the mass matrix to the identity

PLOT EIGV \at Plot eigenvector V1

SOLV LINE Vi Solve for new displacements (after FORM). If LINE present,
compute solution with line search; V1 controls initiation (see
Sec. 13.4)

SUBS PRIN N1 N2 Perform eigenpair extraction for N1 values with N2 extra
vectors. If PRIN print subspace arrays (after TANG and MASS or
IDEN)

TANG LINE N1 V2 V3 Compute and factor symmetric tangent matrix (ISW = 3); see
note

UTAN LINE N1 V2 V3 Compute and factor unsymmetric tangent matrix (ISW = 3);
see note

Note: If N1 is non-zero a residual, solution, and update to the displacements are performed. If V2 is non-zero, the tangent
matrix is modified by subtracting V2 multiplied by the mass matrix before computing the triangular factors. The mass
matrix may be set to an identity matrix by using the command IDEN. If LINE is specified as part of the TANG or UTAN
command a linear line search is performed whenever the energy ratio between two successive iterations exceeds the
value of V3 (the default value is 0.8).

of Newton-type algorithms with rather large solution increments.” The program
includes algorithms to solve transient problems by the methods discussed in Chapter
18 of Volume 1 which are applicable in a non-linear solution strategy. Finally, the pro-
gram has an eigensolution algorithm based upon subspace iteration.> ' A description
of the user information required to invoke the added commands for these features is
contained in Table 13.1.

13.3 Solution of non-linear problems

The solution of non-linear problems using the program contained in this volume
is designed for a Newton-type or modified Newton-type algorithm as described in
Chapter 2 and reference 11. In addition, the solution for transient non-linear problems
may be achieved by combining a Newton-type algorithm with the transient integration
method described below.

13.3.1 Static and steady-state problems

We first consider a non-linear problem described by (see Chapter 2)
U(a) =P(a) —f (13.1)

where f is a vector of applied loads and P is the non-linear internal force vector which
is indicated as a function of the nodal parameters a. The vector ¥ is known as the



416 Computer procedures

residual of the problem, and a solution is defined as any set of nodal displacements, a,
for which the residual is zero. In general, there may be more than one set of
displacements which define a solution and it is the responsibility of the user to
ensure that a proper solution is obtained. This may be achieved by starting from a
state which satisfies physical arguments for a solution and then applying small
increments to the loading vector, f. By taking small enough steps, a solution path
may usually be traced. Thus, for any step, our objective is to find a set of values
for the components of a such that

¥(a)=0 (13.2)
We assume some initial vector exists (initially in the program this vector is zero), from

which we will seek a solution, and denote this as a*). Next we compute a set of iterates
such that

alt) = a0 1 4 gald (13.3)

The scalar parameter, 7, is introduced to control possible divergence during early
stages of the iteration process and is often called step-size control. A common
algorithm to determine 7 is a line search defined by’

g = min |G(n)| (13.4)
ne€o,1
where
G(n) = da? - w(a? + 5 da?) (13.5)

An approximate solution to the line search is often advocated.’

It remains to deduce the vector da"” for a given state a”. Newton’s method is one
algorithm which can be used to obtain incremental iterates. In this procedure we
expand the residual ¥ about the current state a) in terms of the increment da"”
and set the linear part equal to zero. Accordingly,

. oP .

T+ .qa" =0 13.6
( ) Oa a® ( )

We define the tangent (or Jacobian) matrix as

y OP
K == 13.7
T 7 9al,0 ( )

Thus, we obtain an increment

da? = —(K{) "' w(a®) (13.8)

This step requires the solution of a set of simultaneous linear algebraic equations. We
note that for a linear differential equation the finite element internal force vector may
be written as

P(a) = Ka (13.9)
where K is a constant matrix. Thus, Eq. (13.9) generates a constant tangent matrix and

the process defined by Eqs (13.3) and (13.6) converges in one iteration provided a unit
value of 7 is used.
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Non-linear—line search

G()/G(0)

Non-linear—no line search

Fig. 3.1 Energy behaviour: line-search use.

For Newton’s method the residual ¥ must have a norm which gets smaller for a
sufficiently small da(’); accordingly, a Newton step may be projected onto G as
shown in Fig. 13.1. Generally, Newton’s method is convergent if

(1) <aGP0); O<a<l (13.10)

for all iterations; however, convergence may not occur if this condition is not
obtained.”

A Newton solution algorithm may be constructed by using the command language
statements included in the program described in this chapter. A solution for a single
loading step with a maximum of 10 iterations is given by'

LOOP,newton, 10
TANG
FORM
SOLV
NEXT,newton

or

LOOP,newton, 10
TANG, ,1
NEXT ,newton

The second form is preferred since this will ensure that K(Ti> and ¥ are computed
simultaneously for each element, whereas the first form of the algorithm computes

*For some problems (such as those defined by non-linear theories of beams, plates, and shells) early
iterations may produce shifts between one mode of behaviour (bending) and another (membrane) which
can cause very large changes in [¥|. Later iterations, however, generally follow Eq. (13.10).

T Recall that command information shown in upper-case letters must be given; text indicated by lower-case
letters is optional. Finally, information given in italics must have numerical values assigned to define a
proper command statement.

417
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the two separately (for this case each FEAPpv element must compute both K¥) and ¢
when ISW = 3). If convergence occurs before 10 iterations are performed, the process
will transfer to the command statement following the NEXT statement. Convergence is
based upon

G (0) < ol - G0 (0)

where 7ol is specified by a TOL statement (a default value of 107! is set).
A line search may be added to the algorithm by modifying the commands to

LOOP,newton, 10
TANG, ,1
TANG
FORM
SOLV,LINE,0.6
NEXT ,newton

or

LOOP,newton, 10
TANG,LINE,1,,0.6
NEXT ,newton

where 0.6 denotes the value assigned to « in Eq. (13.10).

Line search requires repeated computations of ¥(a + nda) which may increase
solution times. Some assessment of need should be made before proceeding with
large numbers of solution steps.

A modified Newton method also may be performed by removing the tangent
computation from the loop. Accordingly,

TANG

LOOP,newton, 10
FORM
SOLV,LINE,0.6

NEXT ,newton

would compute only one tangent matrix K(T1 ) and its associated triangular factors. The

form command computes only ¥ and SOLV solves the equations by using previously
computed triangular factors of the tangent matrix. Algorithms between full Newton
and modified Newton may also be constructed. For example

Loop, ,2
TANG
LOOP,newton,5
FORM
SOLV,LINE,0.6
NEXT,newton
NEXT

In this algorithm it should be noticed that convergence in the first 5 iterations would
transfer to the outer NEXT statement and a second TANG would be computed followed
by a single iteration in the inner loop before the entire algorithm is completed.
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Use of the BFGS algorithm described in Chapter 2 may lead to improved solution
performance and/or reduced solution cost (see the necking example in Chapter 10). It
is also particularly effective when no exact tangent matrix can be computed. In
FEAPpv use of the BFGS algorithm is specified by the commands

LOOP, ,10
TANG, ,1
BFGS, ,6,0.6

NEXT

where the 6 on the BFGS command indicates 6 updates using the vectors described in
Sec. 2.2.4, and the 0.6 is again the line search tolerance.

The above algorithm recomputes the tangent matrix after each set of BFGS
updates. This aspect usually improves the convergence rate. However, in some
problems the tangent may have significant errors which lead to erroneous ‘geometric’
stiffness contributions. These can impede the effectiveness of the BFGS algorithm. In
such situations it is possible to obtain a better estimate of the tangent by taking a very
small solutions step (e.g. setting the time increment to be small) and follow this by the
full step. This is easily achieved by using FEAPpv by the command sequence

DT, ,0.001xdt

TANG, ,1

DT, ,dt

LOOP, ,10
TANG, ,1
BFGS, ,6,0.6

NEXT

In the above a step of 1/1000 of the Az is indicated to compute the trial tangent step.
Thus the update correction should be very small; however, the program now has an
estimate as to whether loading or unloading is occurring at each quadrature point and
thus in subsequent iterations can use an appropriate tangent for the full step set by the
second DT command.

The reader can use the above options to design a solution algorithm which meets
the needs of most applications. However, in the realm of non-linear analysis there
is no one algorithm which always ‘works’ efficiently and one must try various options.
Indeed, in an interactive mode one can use the BACK command to restart a time step in
situations where standard algorithms fail. Using various options a search for the best
strategy can be found (or at least a strategy which produces a solution!).

13.3.2 Transient problems

The solution of transient problems defined by Eqs (10.1)—(10.3) may be performed by
using the program described in this chapter. The program includes options to solve
transient finite element problems which generate first- and second-order ordinary
differential equations using the GN11 and Newmark (GN22) algorithms described
in Chapter 18 of Volume 1. Options also exist to use an explicit version of the

419
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GN22 algorithm and here the user is referred to the user instructions obtained from
the publisher’s website (http://www.bh.com/companions/fem).

Solution of first-order problems using GN11
Consider first a linear problem described by

Cat+Ka+f=0 (13.11)

If we introduce the SS11 algorithm, we have, at each time ¢, |, the discrete problem
given by Eq. (18.45) of Volume 1 as

¥(0,,1)=Ca, +K[a, | +0Ar0,,,]+f,,, =0 (13.12)
with
a,, | =a, (13.13)
and from Eq. (18.47) of Volume 1
a, | =a,+ Ata, (13.14)
We may also consider a non-linear, one-step extension to this problem, expressed by
@(0,,1) =Ca, + P, +0A1a,, ) +f,, =0 (13.15)

where P is again the vector of non-linear internal forces. The solution to either the
linear or the non-linear problem may be expressed as
[C+0AKY A | = —w(a ) (13.16)

n+1 — n+ 1

with

(i+1) _

an+l -

o +77Aa

n+1

(13.17)

n+1

where 7) is the step size as described above for non-linear problems, and for the linear

blem 1 is al k i ine: 0= -
problem 7 is always taken as unity. For linear problems Ky’ = K whereas for non
linear problems

oP

KO = 9%
T a0

(13.18)
Finally, converged values are expressed without the (i) superscript.
The solution of the transient problem is achieved by satisfying the following steps:

Specify 6.
Specify At.
Specify the time, 7, ;, the number of time steps, and set i = 0.
For each time, 7,
(a) compute ¥(a ELH) '
(b) compute C + GAIKT),
(c) solve for Aa, )
5. Check convergence for non-linear problems:
(a) if satisfied terminate iteration,
(b) if not satisfied set i = i + 1 and repeat Step 5.
6. Output solution information if needed.

Rl e
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7. Check time limit:
(a) if » > maximum number, stop, else,
(b) if n < maximum number, go to Step 4.

For a typical problem these steps may be specified by the set of statements
TRANs,SS11,0.5 [Step 1]

DT, ,0.1 [Step 2]
LOOP, time, 20 [Step 3]
TIME
LOOP,newton,10 [Step 4]
TANG [Step (4a)]
FORM [Step (4b)]
SOLV [Step (40)]
NEXT,newton [Step 5]
DISP,ALL [Step 6]
NEXT, time [Step 7]

The above algorithm works both for linear and for non-linear problems. For linear
problems the residual should be a numerical zero at the second iteration (if not
there is a programming error!) and for efficiency purposes the commands

LOOP,newton, 10
and
NEXT ,newton

may be removed. Also, for linear problems in which the time step is the same, a single
tangent command may be used — in the above this can be accomplished by placing the
TANG statement immediately after the DT statement.

Any of the options for solving a non-linear problem may be used (e.g. modified
Newton’s method or BFGS) by following the descriptions given above in the non-
linear section. In particular, again for efficiency, one should use

LOOP,newton, 10
TANG, ,1
NEXT ,newton

for a full Newton solution step.
Specification of time-dependent loading may be given for

1. proportional loading with a fixed spatial distribution of the nodal load vector,
and/or
2. general time-varying loading.

For proportional loading

fu0 = p(tns0)fo (13.19)

where, in the program,
fhig=1,+0At (13.20)
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The value of f is specified either as nodal forces (during description of the mesh using
the FORCe option) or is computed in each element as an element loading. For example,
the heat source Q in Eq. (1.54) would generate element loads at node i as

fi= |, meaw (13.21)
Q

The value of the proportional factor can be specified in the program as
p(l) = Al + A2Z+ A3 SinL A4 (Z - tmin); Zmin <t < lmax (1322)

Details for input of the parameters are given in the user manual. For proportional
loading the command language program given above is modified by adding a
Step 0: specify proportional loading function, p(f). The command for this step to
specify a single proportional load function is

PROP, ,1

additional data that define the A4;, f,, fmax and L follow the END command in a BATCh
solution mode. Each specification of a new time will cause the program to recompute
p(t,+1). The value of the proportional loading is passed to each element module as a
REAL number which is the first entry in the ELDATA common statement (and is named
DM) and may be used to multiply element loads to obtain the correct loading at each
time.

General loading can be achieved only by re-entering the mesh generation module
and respecifying the nodal values. Accordingly, for this option a MESH command
must be inserted in the time-step loop. For example, one can modify Step 4 above to

LOOP,time, 20
TIME
MESH

For each time step it is then necessary to specify the new nodal values for f, , ;. If the
value at a node previously set to a non-zero condition becomes zero, the value must be
specified to reset the value. This may be achieved by specifying the node number only.
For example,

FORCe
12
26,,5.0

END

would set all the components of the force at node 12 to zero and the first component of
the force at node 26 to 5.0 units.

In batch execution the number of FORC-END paired statements must be equal to or
exceed the number of time steps. In interactive execution a MESH > prompt will appear
on the screen and the user must provide the necessary FORC data from the keyboard
(terminating input with a blank line and an END statement). With a proper termina-
tion the prompt will once again indicate interactive inputs for solution command
statements.

While both proportional and general loads may be combined, extreme caution
must be exercised as all nodal values will be multiplied by the current value of p(7).
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The value of the time increment may be changed by repeating Step 2 and then
performing Steps 4—8 for the new increment. If a large number of different-size
time increments is involved this will be inefficient, and the program has an option
to specify a new value for df as data. The command language program would be
modified by replacing Step 4 with

LOOP,time, 20
DATA,DT
TIME

For each time step the DT statement is supplied as new data. For interactive computa-
tions the user inputs

DT, ,dt

where dt is the size of the time step to be used. In batch executions these commands
again follow the END statement which terminates the command language program. If
other data are input (e.g. the FORC-END paired data), then the data statements must be
in the order requested by the solution program statements.

A DATA instruction may also be used to set a solution tolerance. The form would be

DATA, TOL
and the user would input a command
TOL, ,1.E-10
to set the solution convergence tolerance to 107'°.
Solution of second-order systems
For simplicity the damping matrix, C, is not included in any of the FEAPpv elements.

Steps to add such effects are summarized, however, at the end of this section. Thus, we
consider the differential equation

Ma+Ka+f=0 (13.23)
for linear problems, and
Ma+P(a)+f=0 (13.24)
for non-linear problems.
Solution using the GN22 algorithm The GN22 algorithm may be selected, and from
Chapter 18 of Volume 1 we have for a linear problem
¥(a,, ) =Ma,, +Kfa,, ‘*‘%ﬁzAlzﬁnH} +£1=0 (13.25)
or for a non-linear problem
W(di, 1) =Mi, | +P@, +13HA ) +1,,,=0 (13.26)
where
a,, =a, +Ara, +1A74,

_ (13.27)
., = a, + Al(éin
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and

_ 2. ..
A1 = A4 +/6Al (an-H - an)

_ ) ) ) (13.28)
a1 = 2_l/1+l +7Al(an+l - an)

The above can be related to commonly used Newmark parameters by the expressions

=5 and =20 (13.29)
A solution to the GN22 problems may be expressed as
M +18,A°KY] ddl), | = —9(&)) ) (13.30)
with
iy =4l +nda) (13.31)

Again, the algorithm for solution is identical to the steps for SS11 except that now it is
initiated using the command statement

TRANs,GN22,0.5,0.5

where the two numerical values are for 5, and (3,, respectively (default values are
081 = B, = 0.5). Alternatively, the command

TRANs ,NEWMark,beta, gamma

may be used for the Newmark algorithm with the default values § = 0.25 and v = 0.5.

To start the solution process it is necessary to define an initial value for the
acceleration ay. This may be performed using Eq. (13.26) and the specified initial
conditions for a, and a,. To determine the initial solution, all the loading values
must be assigned and then the command language statement

FORM,ACCEleration

may be used to compute the correct value of a,.

Adding damping effects A damping matrix may be added by including in each element
routine the appropriate terms. Thus, when computing a residual (see Volume 1,
Chapter 20) with ISW = 3 and ISW = 6, the term

Ca, | (13.32)

must be added to the equilibrium equation in each element. The value of a,
localized for each element and adjusted for each algorithm is passed as part of the
UL array (see Volume 1, Chapter 20, for variable name descriptions). The UL array
may be assumed to be dimensioned as

REAL*8 UL ( NDF , NEN , IT )

where NDF is the number of unknowns at each node, NEN is the maximum number of
nodes on any element, and IT denotes the quantities as indicated in Table 13.2. Using
these values and a definition for C, the appropriate terms may be computed and
added to the element residual vector, P. Similarly, the appropriate tangent stiffness
term must be added to the element array S for ISW = 3. Using, the tangent factors
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Table 13.2 Values in UL array for transient algorithms;
n.v.r. = no value returned

IT value Algorithm
GNI11 GN22
1 a+ 0Ar0" al?
2 oA a — a®
3 NN al) —a(=D
4 N.V.I. a®
5 n.V.I. a

it is necessary only to compute C and multiply it by CTAN(2) to perform this step (see
Chapter 20, Volume 1).

13.3.3 Eigensolutions

The solution of a general linear eigenproblem is a useful feature included in the
program contained in this chapter. The program can compute a set of the smallest
eigenvalues (in absolute value) and their associated eigenvectors for the problem

K:V=MVA (13.33)

In the above, Kt is any symmetric tangent matrix which has been computed by using
a TANG command statement; M is a mass or identity matrix computed using a MASS or
IDEN command statement, respectively; the columns of V are the set of eigenvectors to
be computed; and A is a diagonal matrix which contains the set of eigenvalues to be
computed. For second-order equations the eigenvalues X are the frequencies squared,
w’. Accordingly, the program will also compute and report the square root of . Since
negative values of A can occur, the square root of the absolute values is computed. For
negative A the reported values are in fact pure imaginary numbers.

The tangent matrix often has zero eigenvalues and, for this case, the algorithm used
requires the problem to be transformed to

(Kt —aM)V = MVA, (13.34)

where « is a parameter called the shift (see Chapter 17, Volume 1), which must be
selected to make the coefficient matrix on the left-hand side of Eq. (13.34) non-
singular. A, are the eigenvalues of the shift which are related to the desired values by

A=A, +al (13.35)

FEAPpv always reports the value of the eigenvalue and not its shifted value. The shift
may also be used to compute the eigenpairs nearest to some specified value. The
components of A are output as part of the eigenproblem solution. In addition, the
vectors may be output as numerical values or presented graphically.

The program uses a subspace algorithmgflo to compute a small general eigen-
problem defined as

K'x = M"xA (13.36)
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where
V=0Qx (13.37)
and

K'=Q"M' (K; —aM)'MQ
(13.38)
M =Q'MQ
Accordingly, after the projection, the A are reciprocals of A, (i.e. A,'). An eigen-
solution of the small problem may be used to generate a sequence of iterates for Q
which converge to the solution for the original problem (e.g. see reference 10). The
solution of the projected small general problem is solved here using a transformation
to a standard linear eigenproblem combined with a QL algorithm.!?
The transformation is performed by computing the Choleski factors of M* to define
the standard linear eigenproblem

Hy =yk (13.39)
where
M* =LL"
y=L"x (13.40)
H=L'K'L ™"

In the implementation described here scaling is introduced, which causes M* to
converge to an identity matrix; hence the above transformation is numerically
stable. Furthermore, use of a standard eigenproblem solution permits calculation
of positive and negative eigenvalues. The subspace algorithm implemented provides
a means to compute a few eigenpairs for problems with many degrees of freedom
or all of the eigenpairs of small problems. A subspace algorithm is based upon a
power method to compute the dominant eigenvalues. Thus, the effectiveness of the
solution strategy depends on the ratio of the absolute value of the largest eigenvalue
sought in the subspace to that of the first eigenvalue not contained in the subspace.
This ratio may be reduced by adding additional vectors to the subspace. That is, if
p pairs are sought, the subspace is taken as ¢ vectors so that

Ap

>‘q+1

<1 (13.41)

Of course, the magnitude of this ratio is unknown before the problem is solved and
some analysis is necessary to estimate its value. The program tracks the magnitude
of the shifted reciprocal eigenvalues A and computes the change in values between
successive iterations. If the subspace is too small, convergence will be extremely
slow owing to Eq. (13.41) having a ratio near unity. It may be desirable to increase
the subspace size to speed the convergence. In some problems, characteristics of
the eigenvalue magnitudes may be available to assist in the process. It should be
especially noted that when p is specified as the total number of degrees of freedom
in the problem (or ¢ becomes this value), then A, | is infinitely larger and the ratio
given in Eq. (13.41) is zero. In this case subspace iteration converges in a single



Solution of non-linear problems 427

iteration, a fact which is noted by the program to limit the iterations to 1. Accord-
ingly, it is usually more efficient to compute all the eigenpairs if ¢ is very near the
number of degree of freedoms.

Use of the subspace algorithm requires the following steps:

1. compute M, compute the tangent matrix Ky, apply the « shift if necessary,
2. compute the eigenpairs,
3. output the results.

The commands to achieve this algorithm are:

MASS (or IDEN)
TANG, , ,alpha
SUBS, <PRINt>,p,q
EIGV, ,n
PLOT,EIGV,n

Note the specification of the shift value « as part of the TANG statement. The TANG
command computes both the matrix and its triangular factors. The shift is performed
during computation by defining in each element a tangent matrix

K% = C]KT +C2C +C3M
with ¢; = 1, ¢, =0, and ¢; = —a. Thus, specification of the commands MASS and TANG
is not order dependent. The value for ¢ is optional and, when omitted, is computed by
the program as

g = min(NM,NEQ,2 % p,p + 8)

where NM is the number of non-zero terms in the diagonal mass matrix and NEQ is
the number of degrees of freedom in the problem (i.e. those not restrained by bound-
ary constraints specified using BOUN).

The plot of eigenvectors may need to be increased or decreased by a factor to
permit proper viewing. Each eigenvector may be viewed graphically and/or as
output using the EIGV print instruction.

The eigenproblem for individual elements is a common procedure used to evaluate
performance. It is necessary to describe a mesh without restraints to the degrees of free-
dom (i.e. BOUN should not be used in the mesh data). The element normally has zero
eigenvalues, hence a shift must be used for the analysis. Failure to use a shift will
result in errors in the triangular factors of Ky (the program will detect a near
singularity and output a warning) and generally all or a large number of the eigenpairs
will collapse onto the singular subspace. If the shift is specified very close to an eigen-
value these types of errors may also occur. The user should monitor the outputs during
the TANG and the SUBS commands to detect poor performance. If all or a large number
of the eigenvalues are extremely near the shift, a second shift should be tried. In general,
a shift should be picked nearly halfway between reported values. The program also
counts the number of eigenvalues which are less than the shift. This may be used to
ensure that the shift is not too large to determine the desired eigenvalues. Recall that
only the p values nearest to the shift in absolute value are determined.

When properly used, the subspace method can produce accurate and reliable values
for the eigenpairs of a finite element system problem. The method may be used to
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compute the vibration modes of structural systems and is implemented so that it
may be used both for linear and for non-linear finite element models. For non-
linear problems this permits the dependence on frequency with load to be assessed.
Thus, a dynamic buckling load where a frequency goes to zero may be computed.
For non-linear models the static buckling loads for a problem also may be determined
by solving the eigenproblem

K:V=1IVA (13.42)

for a set of loads and tracking the approach to zero of the smallest eigenvalue. A
buckling load corresponds to a zero eigenvalue in Eq. (13.42). As the buckling load
is approached, a shift may be necessary to maintain high accuracy; however, since
a collapsed subspace is the desired solution, this is usually unnecessary.

13.4 Restart option

The program FEAPpv permits a user to save a solution state and subsequently use
these data to continue an analysis from the point the data were saved. This is
called a restart option. To use the restart feature, the file names given at initiation
of the program must be appropriately specified.

Names for two files may be specified and are denoted on the screen as the
RESTART (READ) and the RESTART (WRITE) files. The READ file is the name of a file
which contains the data from a previous analysis. The screen will also indicate
EXIST or NEW for the file. A NEW label indicates that no file with the specified name
exists. The WRITE file is the name of a file to which data will be written as part of
the current session. By default the same file name is given for both the READ and
the WRITE files.

During solution a restart file may be saved by using the command

SAVE,<extender>

This results in a file being written to the RESTART (WRITE) file with an optional
extender appended with the name specified in the command. For example, if the
restart write file has the name ‘Rprob’, issuing the command

SAVE,tiO
saves the data on a file named Pprob.ti0. Alternatively, issuing the command as
SAVE

saves the data on the file named Pprob. For large problems the restart file can be quite
large (especially if the elements use several history variables at each integration point)
thus one should be cautious about use of too many files in these situations.

To restore a file the command

RESTart
is given to load the file without an extender, and the command

RESTart,<extender>
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to load the file with extender. If the write and read files have the same name it is
possible to restart a problem at an earlier state during a solution process. Thus, if a
solution has proceeded to a state after a save where it is decided to pursue a different
loading sequence it is possible to ‘back up’ to a state where the change is to be made
and continue the analysis. Use of restart files can be particularly useful for performing
complex analyses in which different design options are considered.

13.5 Solution of example problems

The first step in using FEAPpv to solve a finite element problem is to create a file with
the mesh data. It is useful to specify the file with a name beginning with I (e.g. IBEAM
for a beam data file). The program then automatically provides default names for the
output and restart files by stripping the I and adding an O and R, respectively (e.g.
OBEAM for output and RBEAM for restart). Once the data are available in the
input file the program can be initiated by entering the program name. In what follows,
it is assumed that the executable program is named ‘feappv’, thus entering this name
initiates an execution of the program. During the first execution of the program in any
directory (folder) the user must specify the name of the input file for the problem to be
solved. The program saves this and other information in a small file named feapname.
The program always requests names for the input/output and restart files. During the
first execution, a name must be provided for the input data file. Default names for the
output and restart are provided and accepted by striking the < ENTER > or <CR >
key or may be replaced by specifying the name of a file to be used. In subsequent
executions of the program, the names of the files from the last execution are read
from the file feapname and used as default values. Once the information is
specified, the user may accept the names assigned by pressing the Y’ key, repeat
the file specification by pressing the ‘N’ key, or stop execution by pressing the ‘S’
key (upper- or lower-case letters may be given for all commands). Once the Y’ key
is struck, the program proceeds to input the data contained in the input file until
either an INTEractive execution command or a STOP is encountered. If the file
contains BATCh execution commands, the solution is performed in a batch-type
mode until user interactions are required. The solution sequence can contain multiple
BATCh sets and multiple INTEractive sets. However, if an interactive execution mode
is requested, the user must provide all the solution steps from the input keyboard. The
inputs are given whenever the screen contains the line

Time = 09:45:33 Macro 1>x

or similar where the number following Time = is the clock or elapsed time for the
computer and x indicates the computer cursor. Solution commands may then be
entered as described in Volume 1, Table 20.16, or as in Table 13.1 in this chapter.
For example entering the command

TANG, ,1

performs a full solution step. Some examples of problem solutions using FEAPpv
are found at the publisher’s website (http://www.bh.com/companions/fem) and are
presented in two files for each problem. The first file contains the input dataset
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and each is indicated by a file beginning with I. The second file contains the output
from the problem. The first part of the output are the data defining the mesh and the
second part the numerical results obtained.

13.6 Concluding remarks

In the discussion above we have presented some of the ways the program FEAPpv
may be used to solve a variety of non-linear finite element problems. The classes of
non-linear problems which may be solved using this system is extensive and we
cannot give a comprehensive summary here. The reader is encouraged to obtain a
copy of the program source statements and companion documents from the
publisher’s website (http://www.bh.com/companions/fem). In addition to the pro-
gram discussed in the first two volumes a companion program devoted to solving
fluid dynamics problems described in the third volume will also be found.

As noted in the introduction to this chapter the computer programs will undoubt-
edly contain some errors. We welcome being informed of these as well as comments
and suggestions on how the programs may be improved. Although the programs
available are written in Fortran it is quite easy to adapt these to permit program
modules to be constructed in other languages. For example an interface for element
routines written in C has been developed by Govindjee."

The program system FEAPpv contains only basic commands to generate
structured meshes as blocks of elements. For problems where graded meshes are
needed (e.g. adaptive mesh refinements) more sophisticated mesh generation tech-
niques are needed. There are many locations where generators may be obtained
and two are given in references 14 and 15. The program GID offers two- and
three-dimensional options for fluid and structure applications. Sub-programs to
interface GiD to FEAPpv are also available at the publisher’s web site (details above).
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Invariants of second-order tensors

A.1 Principal invariants
Given any second-order Cartesian tensor a with components expressed as
apip dip dis
a= (dy dy dax; (A1)
ds;  dsz ds3

the principal values of a, denoted as a;, a,, and a3, may be computed from the solution
of the eigenproblem
(m)

aq" =a, q<’”) (A.2)

in which the (right) eigenvectors q<’”> denote principal directions for the associated
eigenvalue a,,. Non-trivial solutions of Eq. (A.2) require

(ay —a) ap ap
det ay (6122 — a) [25%] = 0 (A3)
aszg azp (as3 — a)

Expanding the determinant results in the cubic equation

a, —1,a + 1 a, — 11, =0 (A.4)
where:
L, =ay +an+asy
H, = apaxn + anasy + ayzay — apay — axaz — azan (A.5)

I, = ajanazs — ay1a3a3 — anazaz — a33apds; + apdrzaz) + draynd;s

=deta

The quantities I, 11, and 111, are called the principal invariants of a. The roots of
Eq. (A.4) give the principal values a,,.
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The invariants for the deviator of a may be obtained by using
a =a-—al (A.6)
where a is the mean defined as
a=2%(ay +an+ay) =11, (A7)
Substitution of Eq. (A.6) into Eq. (A.2) gives
[a' +al]q"™ = a,q" (A.8)
or

a/q(m) = (am - a) q(m) = afn q(m) (A9)

which yields a cubic equation for principal values of the deviator given as
(a,)* + 1, — 11T, = 0 (A.10)

where invariants of a’ are denoted as I/, II/,, and IIT.,.

Since the deviator a’ differ from the total a by a mean term only, we observe from
Eq. (A.9) that the directions of their principal values coincide, and the three principal
values are related through

a=da+a i=17273 (A.11)

Moreover Eq. (A.10) generally has a closed-form solution which may be constructed
by using the Cardon formula.'?
The definition of a’ given by Eq. (A.6) yields

I, =dy +ayn+d;3=0 (A.12)

Using this result, the second invariant of the deviator may be shown to have the
indicial form®

The third invariant is again given by
I, = deta’ (A.14)

however, we show in Sec. A.2 that this invariant may be written in a form which is
easier to use in many applications (e.g. yield functions for elasto-plastic materials).

A.2 Moment invariants

It is also possible to write the invariants in a form known as moment invariants.*
The moment invariants are denoted as I,, II,, I1I,, and are defined by the indicial
forms

ia = dj, IIa = % a;; dji, IIIa = % ajj dji A (A 1 5)
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We observe that moment invariants are directly related to the trace of products of a.
The trace (tr) of a matrix is defined as the sum of its diagonal elements. Thus, the
first three moment invariants may be written in matrix form (using a square matrix

for a) as
I, = tr(a), I, =} tr(aa), 111, = 1 tr(aaa) (A.16)
The moment invariants may be related to the principal invariants as’*
I,=1, n,=11-11, I, =11, - 1 I} + LII, A1
I, =1, I, =112 -11, 1, = I, + L I, - LII,

Using Eq. (A.12) and the identities given in Eq. (A.17) we can immediately observe
that the principal invariants and the moment invariants for a deviatoric second-order
tensor are related through

I, = —II,, and 1L, = I, = deta’ (A.18)

A.3 Derivatives of invariants

We often also need to compute the derivative of the invariants with respect to their
components and this is only possible when all components are treated independently
— that is, we do not use any symmetry, if present. From the definitions of the principal
and moment invariants given above, it is evident that derivatives of the moment
invariants are the easiest to compute since they are given in concise indicial form.
Derivatives of principal invariants can be computed from these by using the identities
given in Eqs (A.17) and (A.18).

The first derivatives of the principal invariants for symmetric second-order tensors
may be expressed in a matrix form directly, as shown by Nayak and Zienkiewicz;>*
however, second derivatives from these are not easy to construct and we now
prefer the methods given here.

A.3.1 First derivatives of invariants

The first derivative of each moment invariant may be computed by using Eq. (A.15).
For the first invariant we obtain

o,
=0 A.19
5(1,/ y ( )
Similarly, for the second moment invariant we get
ol
£ =aj; A.20
day; i ( )
and for the third moment invariant
olll
- = QAjk Apei (A.21)

da

i
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Using the identities, the derivative of the principal invariants may be written in
indicial form as

ol oIl olll, 4
8a7/ = 0y, 861: = Ia 6’] — (lﬁ, aaii = IIa 6,] — Ia aji + ajk akiIIIa aj,- (A22)
The third invariant may also be shown to have the representation’
olll, 1
=11, a; A.23
8&{1‘ aa]l ( )

where a,-?l is the inverse (transposed) of the g;; tensor. Thus, in matrix form we may
write the derivatives as

al, oll T olll

—a _ 1 a — I 1 _ a

da Oa at TR Oa
where here 1 denotes a 3 x 3 identity matrix.

The expression for the derivative of the determinant of a second-order tensor is of
particular use as we shall encounter this in dealing with volume change in finite defor-
mation problems and in plasticity yield functions and flow rules.

Performing the same steps for the invariants of the deviator stress yields

or _or o o, our e’

= = = — = —a; = = dy ay; A.25
day  Oaj; ’ day day " day  Oaj; ST ( )

= 1l,a " (A.24)

with only a sign change occurring in the second invariant to obtain the derivative of
principal invariants from derivatives of moment invariants.

Often the derivatives of the invariants of a deviator tensor are needed with respect
to the tensor itself, and these may be computed as

o() () od

= A.26
Dy~ Dl Dty (A.26)
where
Baﬁ-j 1
=6,,0, —=0;0 A.27
aamn im Yjn 3 ij Ymn ( )

Combining the two expressions yields

o0 a0 1, [%a(-)’] (A28)

= 7 A Ymn 7
8amn 8amn 3 8“[/‘

A.3.2 Second derivatives

In developments of tangent tensors we need second derivatives of the invariants.
These may be computed directly from Eqs (A.19)—(A.21) by standard operations.
The second derivatives of I, I1,, I1I,, yield

"1, ™M1, o™M11,,
= = Ojk 6i[ )

= by ay + b (A.29)

- )
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The computations for principal invariants follow directly from the above using the
identities given in Eqs (A.17) and (A.18). Also, all results may be transformed to the
vector form used extensively in this volume for the finite element constructions. These
steps are by now a standard process and are left as an excercise for the reader.
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Kinematic hardening back stress 67

Kinematic hardening relations 66

Kinematics equations 314

Kirchhoff constraints 158

Kirchhoff plates 111

Kirchhoff stress 316, 317, 325, 329, 342, 343, 344,
345, 358

Kirchhoff triangular plate bending element 226

Kirchhoff-Love assumption 245

Koitr treatment for multi-surface plasticity 80

Kronecker delta quantities 315

Kuhn—Tucker constraint form 51

Lagrange multiplier constraint 405
Lagrange multiplier form 350, 353
perturb of 406
Lagrange multipliers 398, 402
Lagrangian form, augmented 351
Lagrangian interpolation 160, 188, 286
Lagrangian quadratics (QL) 179
Lagrangian variables 113
Laminar behaviour 88
Laminar materials 86
Laminar structures 308
Laplace transform theory 40
Large deflection problems, solution of 383
Large displacement formulation with small
rotations 370
Large displacement theories:
beams 365
thick plates 375
thin plates 381
Least square substitute shape functions 151
Legendre polynomial 256
Limit load behaviour 74
Limit plastic state 71
Line search computer programs 416
algorithm for 414
Line search procedures 30
Linear axisymmetric shell elements 277
Linear elasticity 6
Linear interpolations 247
Linear momentum 399
balance of 4
Linear stiffness matrix 6
Linear triangular element (T3S1B1) 198, 200

Linear viscoelasticity 39
model for 45
Linearization 327, 350, 354, 380
Linked interpolation 199, 229
Linking function, derivation of 200
load bifurcations 1
Load correction matrix 336
Load matrix 127, 133, 134
Loading, axisymmetric 245
Loading factor expansion 291
Local direction cosines 221
Local and global coordinates 220
Localization, in elasto-plastic deformations 88
Localization (slip line) capture 93

McHenry—Alfrey analogies 48
Magnetic response, and non-linear quasi-
harmonic field problems 101

Mapping, isoparametric 203
Martices, strain displacement 378
Master nodes 348, 351
Material:

behaviour of 1, 164, 210

brittle 84

constitution for finite deformation 338

elasto-viscoplastic 78

finite deformation 338

frictional 68

Huber—von Mises-type 166

hyperelastic 313, 320

inelastic 38, 164, 210

isotropic 61, 179, 272, 300, 313, 340
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Maxwell 43

neo-Hookean 341, 357

no-tension 84

non-linear 1, 38

plastic, hardening/softening of 48
Matrices:

elastic modulus 61

elasticity 55, 245, 272

elasto-plastic modulus 56

element for discrete collocation constraints 192

finite elements notation 334

geometric 383

Green strain 321

identity 28

and index form 5

Jacobian 26, 273, 416

linear stiffness 6

load 127, 133, 134

load correction 336

Newton method 30, 31

orthogonal 366

Piola—Kirchhoff stress 321

plate bendinginitial stress 381
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272, 293, 300
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substitute shear strain 194
tangent 66, 337, 379, 383, 416
velocity 399
Matrix form, relation with index form 5
Maximum plastic dissipation principle 53
Maxwell material 43
Maxwell model 39
generalized 41, 43, 44
Membrane box structures 295
Membrane forces 244
Membrane interpolations 227
Membrane locking 286
Membrane stresses 250
Mesh density 140, 142, 143
Mesh generation, blending function 358
Metals, creep of 80
Mid-side nodes 146
Minimum potential energy 162
Mixed elements 155
use of 72
Mixed forms, use of 9
Mixed formulations 155, 173
Mixed patch test 230
Mixed variational principle 162
Mixed—enhanced finite deformation formulation
332
Modelling, geometric 348
Models:
neo-Hookean 341
resultant constitutive 166
Modes:
additional enhanced 248
bubble 187, 196, 198
enhanced 196
enhanced strain 248
rigid body 130
vibration 428
Modified modulus term 12
Modified Newton—Raphson method 26, 34, 84
Moduli:
direct elastic 114
shear elastic 114
Young’s 272
Mohr—Coulomb surface 56, 89
Mohr—Coulomb yield conditions 62
Moist soil, freezing 14
Moment invariants 433
Momentum, linear and angular 399
Motions:
pseudo-rigid 396
rigid 398
Multi-degree-of-freedom systems 30
Multi-surface plasticity, Koiter treatment 80
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Multiaxial stress 49

Multibodies, coupled by joints 404
Multiple branches 22

Multiple solutions 23

Multipliers, penalty 261

Necessary requirements 184
Necking of a circular bar 357
Neo-Hookean models/materials 341, 357
Neutral equilibrium, and stability 374
Newmark procedure 6, 419
Newton matrix method 30, 31
Newton—Raphson iteration 35, 59, 102, 166, 327,
351
Newton—Raphson method 24, 79
modified 26, 84
Newton—Raphson process 59, 336, 379, 392
negative features of 25
Newton—Raphson scheme 78, 331, 335, 346, 359
Newton—Raphson solution 313, 324, 326, 339,
345, 352, 354, 369, 403
Newton-type computer algorithms 415, 416, 417
Newton-type solution 46
strategy for 42
Newton’s method see Newton—Raphson method
No-tension material 84
Nodal circles 246
Nodal displacement 218
Nodal forces 127
and tangent matrix terms 337
Nodal load vector 127
Nodal parameters 123, 192
Nodal rotation 255
Nodal values 188
Nodal variables 134
Node transforms 220
Node—node contact 348
Node—surface contact/treatment 351
between discs 355
Nodeless variables 255
Nodes:
master 348, 351
slave 348, 351
Non-associated formulations 89
Non-associated plasticity 91
Non-associative case:
frictional materials 68
generalized plasticity 68
Non-associative hardening 53
Non-associative plasticity 52, 60
Non-linear algebraic equations 22
Non-linear behaviour of solids:
geometric non-linearity 1
material non-linearity 1
small deformation problems 3
Non-linear elastic behaviour 48
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Non-linear formulation, transient and steady-
state problems 6

Non-linear materials 38

Non-linear problems, computer program
solutions 415

Non-linear quasi-harmonic field problems 12, 101

Non-linear structural problems 365

Non-local approach 92

Non-uniqueness 23, 90

in elasto-plastic deformations 88

Normal direction cosines 225

Normal slopes 146

Normality principle (flow rule) 51

Norton—Soderberg creep law 81

Numerical integration 165, 274

Numerical patch tests 186

One-dimensional beam example 159
Orthogonal functions 289
Orthogonal matrix 366

Orthogonal transformations 220
Overlay models 54

Parabolic axisymmetric shell elements 277
Parabolic-type elements 297
Parallelogram elements 128
Parameters:
forms without rotational 208
nodal 123, 192
rotational 208
Pascal triangle 154
Patch count, and discrete collocation constraints
188
Patch tests 131
an analytical requirement 134
and collocation constraints 195
continuity condition 135
curvilinear coordinates 128
numerical 186
plate bending elements 183
quadrilateral mixed elements 185
simple count 187
thick plate elements 203
triangular mixed elements 186
Patches:
four-element 190
single-element 190
Path dependent behaviour 35
Penalty functions 261, 350
Penalty multiplier 261
Penalty parameters 175
Perforated plate:
plane strain solutions 73
plane stress solutions 72
Perturbing a Lagrange multiplier form 406
Pian—Sumihara elements 199, 334

Picard iteration 29
Piola—Kirchhoff stress 317, 320, 328, 333, 339,
345, 368, 369
Piola—Kirchhoff stress matrix 321
Pipe penetration 284
Plane element stiffness 218
Plane strain solutions, perforated plate 73
Plane stress 165
J, 66
Plane stress solutions, perforated plate 72
Plastic behaviour 48
Plastic computation, examples of 71
Plastic correction 58
Plastic deformation, sustained 51
Plastic deviatoric strain rates 64
Plastic flow rule potential 51
Plastic localization calculation 96
Plastic material, hardening/softening of 48
Plastic mechanisms 93
Plastic potentials, additional 88
Plastic strain rate 51, 54
Plastic stress—strain relations 54
Plastic yield surfaces 87
Plasticity:
associative 52, 60
constitutive model construction 54
non-associated 91
non-associative 52, 60
rate form equations 64
time-independent theory 48
upper and lower bound theorems 52
Plasticity models 343
finite deformation 358
isotropic 61
Plate bending, initial stress matrix for 381
Plate elements 157
Plates:
bending 111
bending elements 183
bending stiffness 114
bending strains 117
bending triangles 151
boundary conditions 116
circular, bending 262
clamped 175, 384
composites 118
cylindrical bending 113, 114
definition 1
discrete exact thin limit 202
displacement formulation 122
equilibrium equations 115
with flexure 296
governing equations 113
homogeneous 158
hybrid 157
in-plate plate stiffness 114



internal/external virtual work 121
isotropic elasticity 118
isotropic homogeneous 380
large deflection problems 383
non-homogeneous 158
non-linear formulation 379
point loads 176
rectangular 125
square with clamped edges 136, 139
square simply supported 278
strain components in 165
thick 173, 180, 203
large displacement theory 375
Reissner—Mindlin 173
and shells 277
thin 111, 112
irreducible approximation 120
transverse shear group strains 117
twisting moments 118
Point collocation of nodes 193
Point loads on plates 176
Point numbering 222
Poisson ratio operator 48
Poisson’s ratio 67, 73, 114, 118, 272
Polar decomposition of the deformation gradient
398
Polygonal shape approximation, to a curved shell
249
Polynomials:
area coordinate 130
complete linear 129
Hermitian 152, 296
Legendre 256
quintic 153
Postulates, Reissner—Mindlin 111
Potential energy principle 193
Power station, underground 84
Prandtl-Reuss equations 63
Prandtl-Reuss-strain relations 65
Pressure approximations 11
Pressure loads, and deformation dependent
forces 336
Principal stretches, logarithmic form 342
Principal tensile stresses, elimination of 84
Principles:
constrained potential energy 193
d’Alembert 323
Hellinger—Reissner 156
Prismatic bar 292
Procedures:
discretization 176
Galerkin 181
Processes:
Galerkin 176
Newton—Raphson 336
semi-analytical finite element 289
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static condensation 203, 336
Prony series 43
Properties, curved elements 254
Propped cantilever, Euler buckling 374
Pseudo-rigid motions 396
Push forward transformation 340

Quadratic displacement approximations 162
Quadratic fully integrated elements (QS) 179
Quadratic interpolation 194, 198
Quadratic triangles 135
Quadratics, lagrangian (QL) 179, 190
Quadrature formulae 248, 274
Quadrilaterals:
and discrete collocation constraints 187
elements 128, 149, 183
linear 200
mixed elements, patch tests 185
Quartic and quintic elements 154
Quasi-conforming elements 150
Quasi-harmonic field problems, non-linear 12, 101
Quasi-harmonic problem 13
Quasi-Newton method 26, 31, 34
Quintic polynomials 153

Railway bridge 138
Rate constitutive models 345
Rates of convergence 145
Rayleigh quotient form 374
Rectangular element (12 DOF) 124
Rectangular quadrilateral elements 209
Recursion formula 46
Reduced (selective) integration 182
Reference configuration 312, 314
Reference configuration formulation 320
Regula falsi procedure 30
Reinforced concrete:

cracking of 86

as a no tension material 84
Reissner—Mindlin assumptions 266
Reissner—Mindlin postulates 111
Reissner—Mindlin thick plates 173
Relaxation moduli 39
Relaxation modulus function 43
Relaxation times 39, 41
REP methods 94
Restart option, FEAPpv computer program 428
Resultant constitutive models 166
Retaining wall, earthquake excitation of 19
Retardation time parameters 40
Return map algorithm 58, 80
Revolute joint 407
Rigid bodies:

connected to a flexible body 402

equations of motion 399

modes 130
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Rigid footing, failure of 98
Rigid motions 398
Rods, definition of 1
Rotating disc, numerical example 409
Rotation, nodal 255
Rotation-free elements 162
Rotational constraints, on joints/couplings 406,
407
Rotational parameters 208
Rotational stiffness, 6 DOF 225
Rotational treatment 227
Rotations 202
and displacement fields 270
Runge—Kutta method/process/procedure 36, 57

Saint-Venant—Kirchhoff material model 409
Saint-Venant—Kirchhoff relation 397
Saint-Venant—Kirchhoff stored energy model
320
Secant method 28
Secant procedure 30
Secant update method 29
Second-order system solution using GN22 423
Second-order tensors, invariants of 432
Seepage flow 101
Selective integration 182
Semi-analytical finite strips 305
Semi-analytical finite element processes 289
Serendipity element, eight-node 286
Serendipity functions 201
Serendipity quadratic elements 179, 183
Shallow shells 388
Shape functions 124, 129, 133, 145, 208, 290
and continuity requirements 122
simple triangular element 145
substitute 150
thin plates 112
Shear deformation, plates 114
Shear locking 369
Shear relaxation modulus function 43
Shear rigidity 189
Shearing stresses, and laminar material 87
Shells:
as an assembly of flat elements 216
axisymmetric 217, 244, 387
axisymmetric, curved, thick 275
axisymmetric with non-symmetrical load 303
bending 111
branching 260
classical treatment of 216
curved 249, 267
cylindrical 250, 281
definition 1

with displacement and rotation parameters 266

divided into triangular elements 223
finite element method 217

flat element approximation for 217
general theories 218
hemispherical 251
in-plane force resultants 216
inelastic behaviour 279
non-linear response and stability 386
problem treatment methods 216
and rigid bodies 404
shallow, co-rotational forms 388
shallow shell theory 217
spherical shell problem 227
stability of 390
stress representation 274
thick, axisymmetric, curved 275
and thick plates 277
three-dimensional analysis 266
toroidal, under pressure 258
Sherman—Morrison—Woodbury formula 69
Single rotational constraint joints 407
Single translational constraint joints 407
Skew curved bridge 137
Skew-symmetric stress component 229
Slave nodes 348, 351
Slip line (localization) capture 93
Slope-displacement interpolation 261
Slopes, normal 146
Small deformation non-linear solid mechanics
problems 3
Small rotations, large displacement formulation
370
Smoothed elements 150
Softening behaviour 31
Softening of plastic material 48
Softening/hardening rules 52
Soil mechanics/behaviour:
associated and non-associated issue 83
viscoplastic models for 82
Solid mechanics:
general problems 1
small deformation 3
Solution, fine element 377
Solution by analogies 48
Solutions:
elasto-plastic 249
large deflection problems 383
Newton—Raphson 324, 326, 339
Spherical cap 284
Spherical dome 257, 279
Spherical dome under uniform pressure 281
Spherical path controls 31
Spherical points 407
Spherical shell problem 227
Spherical test problem 226
Spinning constrained disc 405
Spline finite strip method 305, 308
Spline functions 306



Spontaneous ignition 15, 102
SPR methods 94
Spring-dashpot model 39
Square plates, clamped edges 136, 139
Stability:
of equilibrium 373
and large plate deflections 385
and neutral equilibrium 374
shells 390
Standard barrel vault problem 230
Static condensation 203, 249, 336
Static equilibrium, Euler equations for 321
Static problems, computer program solutions
415
Steady-state problems:
computer program solutions 415
non-linear formulation 6
Steel pressure vessel, plastic computation with 75
Step-size control, computer programs 416
Stiffness:
geometric 3, 328
initial stress 3
rotational 225
Stiffness matrix 127, 128, 131, 133, 134, 219, 221,
248, 272, 293
isotropic elastic material 300
Stored energy function 340
Saint-Venant—Kirchhoff model 320
Strain:
enhanced strain methods 332
global 276
Green 322
Green—Lagrange 376, 387
mixed form expression 10
recovery procedures 94
Strain components 245
Strain-displacement equations, mixed form 11
Strain-displacement matrices:
evaluation of 182
finite element evaluation 378
Strain-displacement matrix 5
Strain-displacement operator 174
Strain-displacement relations 247
Strain-driven form 42
Strain expressions for curved elements 254
Strain rates:
plastic 51
plastic deviatoric 64
Strain softening 89, 97
Strain tensor, Green—Lagrange 368
Strain tensors 316
Strains and stresses, definitions 271, 303
Stress:
Cauchy 316, 318, 325, 329, 339, 342, 345, 359
Kirchhoff 316, 317, 325, 329, 342, 343, 344,
345, 358
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mixed form expression 10
multiaxial 49
Piola—Kirchhoff 317, 320, 321, 328, 339, 345,
368
recovery procedures 94
stress function 302
uniaxial 49
Stress deviator 41
Stress divergence 6
Stress field, equilibrating 157
Stress force 6
Stress hardening relations 66
Stress increment computation 56
explicit methods 57
implicit methods 57
Stress measures 316
Stress rate form, Jaumann—Zaremba 346
Stress representation, shells 274
Stress resultants 113, 245
Stress tensor, Piola—Kirchhoff 334
Stress transfer method 26
Stresses and strains, definitions 271
Stretching ratio 96
Structural dynamics 15
Structural problems, non-linear 365
Subincrementation 57
Sublayer models 54
Subparametric derivation 252
Substitute shape functions 150
Substitute shear strain matrices 194
Superparametric elements 271
Surface plasticity models 70
Symmetric stress behaviour 164
Systems, irreducible 175

Tangent computation 12
Tangent equation system 32
Tangent matrix 66, 77, 337, 379, 383, 416
computer program for 416
evaluation of 379, 383
use of 8
Tangent matrix terms 371
and nodal forces 337
Tangent moduli 42
Tangential displacements 256
Tensor form, relation with index relation 5
Tensors:
Almansi strain 316
Cauchy—Green deformation 316, 338, 342
Green strain 316
Green—Lagrange strain 368
mixed deformation 328
nine component computations 50
second-order, invariants of 432
two-point 315
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Tests:
mixed patch 230
spherical shell problem 227
spherical test problem 226
Theory:
large displacement of beams 365
large displacement of thick plates 375
large displacement of thin plates 381
shallow shell 217
two-dimensional of beams 366
Thick box bridge prism 294
Thick plate elements, theory limitations 203
Thick plates 111
large displacement theory 375
mixed formulation for 180
numerical solution for 173
and shells 277
Thick shells, axisymmetric, curved 275
Thick-walled cylinder subject to internal pressure
46
Thin case, axisymmetric shell:
no shear deformation 303
shear deformation 304
Thin membrane box structures 295
Thin plates 111
irreducible approximation 120
large displacement theory 381
theory of 112
thin plate limit 203
Three-dimensional analysis, shells 266
Three-dimensional elasticity 155
Three-field mixed finite deformation formulation
328
Three-field mixed method for general constitutive
models 9
Time-independent plasticity theory, classical 48
Tolerance limits 33
Toroidal shell, under pressure 258
Torsion, variable section circular bar 300
Total increment, use of 7
Tower, axisymmetric, under non-symmetric load
301
Traction boundary 120
Transformation matrix form 4
Transformations:
isoparametric 262
Jacobian 199, 273
orthogonal 220
push forward 340
and rotational stiffness 226
and shell element properties 272
to global coordinates 219
Transforms, node 220
Transient heat conduction 14
Transient problems:
computer procedures for 419

non-linear 6
typical examples 14

Transient solutions 401
Translation constraints on couplings 405
Translational constraint joints 407
Transverse shear energy 189
Transverse shear group strains, plates 117
Trefftz-hybrid elements 158
Tresca surface expressions 89
Tresca yield conditions 62
Triangles/triangular elements

6 DOF 133

9 DOF 128, 144

12 DOF 144

15 DOF 148

18 DOF 153
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arbitrarily oriented in space 223

Clough and Toucher 148

and collocation constraints 194

compatible 148

linear 200

mixed 186

Pascal 154

plate bending 151

quadratic 135

simple 145
Twisting moments, plates 118
Two-point tensor 315

UMESHn computer input routine 413

Underground power station, and no-tension
issues 84

Uniaxial stress 49

Unsymmetric solver 313

Unsymmetrical loads 244

Variables:
lagrangian 113
nodeless 255
Variational description for finite deformation
319
Variational Galerkin statement 137
Variational principle 162
Variational theorem for finite elasticity 320
Vault, cylindrical 282
Vector, nodal 127
Velocity matrices 399
Vibration modes, computer programs for
428
Virtual displacements, finite element
approximations to 5
Virtual work 134
plates 121
Virtual work equation 5
Virtual work statement 132



Viscoelastic relaxation function 46
Viscoelasticity 39

iterative solution scheme 80

linear models for 39
Viscoplastic laws 80
Viscoplastic model 79
Viscoplastic (or creep) strain rate 78
Viscoplasticity 88
Viscoplasticity/viscoplastic models 78
Volumetric strain approximations 11
Volumetric stress effects 11

Weak form for equilibrium 4

Weighted residual Galerkin form 156
Weighting, Dirac delta 189

Work, internal/external virtual, plates 121

Subject index

Yield:
and multiaxial stress 49
surface and normality criterion 50

Yield conditions:
Drucker—Prager 62
Huber—von Mises 62
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Yield functions 50

Yield stress 48
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Zero stress increment 60
Zone of attraction 26
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